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Abstract: This works is a cross-disciplinary study of econometrics and machine learning (ML) mod-
els applied to consumer choice modelling. To breach the interdisciplinary gap an integrated
simulation and theory-testing framework is proposed. It incorporates all essential steps from hy-
pothetical setting generation to the comparison of various performance metrics.

The flexibility of the framework in theory-testing and models comparison over economics and
statistical indicators is illustrated based on the work of Michaud, Llerena and Joly (2012). Two
datasets are generated using the predefined utility functions simulating the presence of homoge-
neous and heterogeneous individual preferences for alternatives’ attributes. Then, three models
issued from econometrics and ML disciplines are estimated and compared.

This study shows the proposed methodological approach’s efficiency, successfuly capturing the
differences between the models issued from different fields given the homogeneous or heteroge-
neous consumer preferences.
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Abstrait: Ce travail est une étude interdisciplinaire des modèles d’économétrie et d’apprentissage au-
tomatique (ML) appliqués à la modélisation des choix des consommateurs. Pour briser la fron-
tière interdisciplinaire, un cadre intégré pour tester des théorie est proposé. Il intègre toutes les
étapes essentielles de la génération de paramètres hypothétiques à la comparaison de diverses
mesures de performance.

La flexibilité du cadre dans les tests de théorie et la comparaison de modèles par rapport aux
indicateurs économiques et statistiques est illustrée à partir des travaux de Michaud, Llerena et
Joly (2012). Deux ensembles de données sont générés à l’aide des fonctions d’utilité prédéfinies
simulant la présence de préférences individuelles homogènes et hétérogènes pour les attributs
des alternatives. Trois modèles issus des disciplines économétrie et ML sont ensuite estimés et
comparés.

Cette étude montre l’efficacité de l’approche méthodologique proposée, en captant avec succès
les différences entre les modèles issus de différents domaines compte tenu des préférences ho-
mogènes ou hétérogènes des consommateurs.

Mots clés: Choix du consommateur, Études de Préférences, Consentements à Payer, Économétrie, Sci-
ence des Données, Apprentissage Automatique, Techniques de Classification, Données Synthé-
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Introduction

The advances in statistical learning, data analysis and data science of the past decades have resulted
in propagation of Machine Learning (ML) techniques to different applied fields, including social and
human sciences. Nowadays, it is impossible to imagine a field of science that is not benefiting from the
fruits of statistical learning. The works of De Palma et al. (2011) and Cascetta (2009) on transportation
modelling, the publications of Molina and Garip (2019) dedicated to sociology problematic, the arti-
cles of Coussement, Benoit, and Poel (2010) concerning marketing decisions, actuary analysis studies
(Denuit and Trufin (2019), Denuit and Hainaut (2019)) or even psychology with an example of Baayen
et al. (2017) work reflect the literal omnipresence of the newly developed techniques.

However, there exist two completely distinct approaches to applying statistical learning, as described by
Breiman and others (2001) and latter by Athey and Imbens (2019): the Machine Learning which fo-
cuses on the predictive qualities (figure 1c) andEconometricswhich attempts to decipher the underlying
properties of the data (figure 1b). In economics, where the research is focused on hidden patterns explo-
ration, the scientific community prefers to implement the traditional econometrics techniques using the
more advanced statistical models only in some special cases or as some assistance tools (Athey 2018).
This discrepancy is explained by the fact that econometrics, contrary to traditional ML paradigm fo-
cusses on the accessibility of results. Consequently, many of the advanced ML techniques rarely appear
in economics publications because of their believed lack of interpretability and excessive complexity in
application. Nevertheless, some multidisciplinary scientists make attempts to breach this wall between
ML and Econometrics: Varian (2014), Mullainathan and Spiess (2017) or, among the most recent,
Athey and Imbens (2019). Their advances are mostly focused on resolving the general interdisciplinary
tool-set integration questions, without considering the application specific details. Nevertheless, in the
attempt to breach the interdisciplinary barrier the details reveal themselves to be of utmost importance
in the solution of the problem.

Figure 1: The different paradigms

(a) Real world

NatureX Y

(b) Econometrics

Theoretical
modelX Y

(c) Machine Learning
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X Y

There have already been a multitude of studies comparing the performances of different econometric
and ML models in various real world scenarios: the study of machine learning methods to model the
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car ownership demand estimation of Paredes et al. (2017), for example; or the use of decision trees
in microeconomics of Brathwaite, Vij, and Walker (2017). However, there’s no known to us work
incorporating at least all the baseline models, as it would require an unimaginable amount of efforts to
accomplish. For instance, in the literature the performance of competing models are studied according
to several absolutely alien criteria: in terms of the quality of data adjustments, in terms of predictive
capacity, as well as in terms of the quality of the economic and behavioural indicators derived from
estimates and, finally, according to their algorithmic efficiency and computational costs. None of the
known to us articlesmanages to incorporate all these aspects into their benchmarks, limiting their studies
only with several performance criteria.

These various aspects, greatly impact the performance of particular models or algorithms, although
some of them are often ignored by the researchers. Not only there exists inconsistency in the targeted
performance metrics in the contemporary models’ comparisons, but there is also omnipresent problems
of theoretical background choice, dataset selection or model’s specifications. For example, speaking
about the datasets used to support their findings, many researchers explore the impacts of different spec-
ifications on the same observed or simulated choice situation (Munizaga and Alvarez-Daziano (2005),
Fiebig et al. (2010), McCausland and Marley (2013), Bouscasse, Joly, and Peyhardi (2019)) as it ap-
pears to be the most theoretically reliable procedure. However, there is still no established unified
methodology documenting this field.

From this unambiguity in the scientific community the main problematic of this work arises. It is
particularly important to establish a common framework for performance comparison of the discrete
choicemodels be they from the econometrics orML tool-set. However, this task cannot be accomplished
outside a precise context, which will potentially impose some limitations over the models’ structure,
as well as influence the choice of performance metrics. In economics the discrete choice models are
extensively used for consumer choice analysis (Anderson, De Palma, and Thisse 1992), willingness
to pay derivation (Michaud, Llerena, and Joly 2012) and other preference studies. The field specific
theories and traditional research objectives frame and define this study’s scope.

From the economics perspective there exist three major points of interest to be taken into account.
First, there is a strong interest in economics to explore the different behavioural set-ups, under different
settings and assumptions. Secondly, given the different choice situations there is a potential need to
test how the available mathematical models, potentially sensitive to the tested behavioural hypotheses
or dependent on these hypotheses, perform in a given context. Last, but not least, a comprehensive
implementation of a performance evaluation methodology, combining reproducibility and control of
experimental conditions, should be introduced in the proposed framework.

Consumer choice

The economic decision theory derives mostly from the random utility theory (RUM) of McFadden
(1974) and more recently of McFadden (2001), that were recently challenged by alternative visions
such as random regret minimisation theory (RRM) of Chorus (2010), with a related relative advantage
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maximisation theory (RAM) of Leong and Hensher (2015), or even quantum decision theory (QDT) of
Yukalov and Sornette (2017), which offers a wide range of tools for modelling under uncertainty.

These different theories address various aspects of the decision making process, under different suppo-
sitions and incorporating different biases. For example, one of the basic assumptions of the traditional
choice theory is the transitivity of choice, meaning there exists a strict hierarchy of individual pref-
erences among alternatives. This assumption may be unsuitable for real world choice situation and
lead to potential bias, which is addressed by quantum decision theory. QDT manages to bypass this
shortcoming and incorporate non-transitivity of choices into the framework. There exist a multitude of
other behavioural elements unexplained by the most traditional models that may be incorporated into
the decision making framework, such as loss aversion for example, that could be addressed with random
regret minimisation theory.

There is a particular interest in detecting the differences in the models’ performances depending on
the choice context and the assumed decision-making framework. It is important, because different
consumer behaviour in the individual choice context result in different choice distributions, which may
affect the models’ performances. In economics RUM theory is nowadays one of the most used choice
settings in the individual decisionmodelling. Nevertheless, there still exist some unexplored limitations,
that such theoretical framework may impose over the estimation techniques, as well as to what potential
biases a model’s misspecification may lead.

Mathematical models

In general any classification technique may be used to model individual decisions, although nearly
every model has some restrictions and limitations, which may largely affect its performances in a given
context.

Usually the choice of model is rarely discussed in applied studies, as the researchers tend to use either
the simplest model possible or attempt to implement one particular model of interest ignoring some
times the other possible choices. For example, many traditional econometrics studies, given a multiple
choice problem context, use a multinomial logistic regression (MNL) or even simplify the problem to a
binary case, allowing to implement even more traditional models such as binary logit or binary probit
models. However, there exists a multitude of particular cases in modelling individual choices, that
require specific techniques to be implemented. A family of duration models may be used to model the
individual decisions over time (Vitetta (2016)); network modelling that allows to incorporate spatial and
social dependencies for the explored data (Brock and Durlauf (2003)); preference learning techniques
aiming to explore the positioning of different alternatives by an individual (Tsoukiàs and Viappiani
(2013), Pigozzi, Tsoukiàs, and Viappiani (2016)) and many other advanced techniques from machine
learning field such as neural networks or support vector machines.

An incorrect choice of the modelling technique may have a strong impact on the derived target values
leading to some erroneous conclusions in the end. For example, an incorrectly estimated willingness to
pay for a particular product may lead to significant losses. When conducting an applied research study
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one should always be conscious of the eventual biases introduced by the choice of the model and the
eventual consequences of these choices. Somemodels are not suitable to be implemented on a particular
set of data, while others are unable to provide necessary information about the relationships within a
particular dataset or derive the particular target values of interest.

Taking into account the implications of RUM theory, there exists a particular interest to make the focus
on the state of art econometric discrete choice models (Agresti (2013), Agresti (2007), Baltagi (2008),
Train (2009), McFadden (2001), McFadden (1974)) as well as their counterparts used in ML (Hastie,
Tibshirani, and Friedman (2009), Kotsiantis, Zaharakis, and Pintelas (2006)). A comparison of some
simple models against more complex ones may reveal the trade-off between precise estimates and the
resources invested.

Data

Different sources of data are available for a researcher, that could be divided into two groups (Japkowicz
and Shah 2011): field datasets, which are gathered through an experiment or collected from the real
world observations or real world uncontrolled experiment; and synthetic datasets, which are artificially
generated by the researcher to suit his needs and respect some particular limitations. Although this
variability of dataset choices not that evident in the context of applied studies, there is an ongoing debate
concerning the eventual impacts of data choice on the models’ performances and resulting metrics.

Given a task of performance evaluation and comparison for different algorithms ormathematical models
there is always a difficult choice of the data type to be used in the study. Both of the mentioned above
dataset types have their advantages and disadvantages and require a particular attention. However,
having for objective the theory- and model-testing framework construction there is a strong interest to
use the artificially generated data in order to have as much control as possible over the situation.

The framework and context

Given these three key elements we propose an integrated simulation and theory-testing frameworkwhich
will encompass all the different aspects of the model comparison task. The steps to be integrated into
such framework encompass many theoretical questions starting with the underlying theoretical assump-
tions and ending with the choice of correct performance metrics. Consequently, this work attempts to
fill the gap between two statistical paradigms: econometrics andmachine learning, taking into account
the key elements, among which the different combinations of decision theory assumptions, dataset gen-
eration procedures, mathematical models and target performance measures. The problematic arises
from the insufficient points of contact among researchers from different fields of applications, as well
as insufficiently unified methodology to put into relations the different approaches. A work that uses
unified knowledge from several disciplines might be highly beneficial for the scientific community as
it will lie a foundation and provide support for future applied studies. Following the logic of Athey
(2018) and Mullainathan and Spiess (2017) the project will attempt to merge the essentials of ML and
econometrics paradigms, retaining their key concepts in the context of consumer choice problem.

We propose to use an applied paper in econometrics of choice modelling to facilitate understanding

4



of the field of application and tools. This means not that we will attempt to replicate the results, but
rather to use the context provided in the work for demonstration of the proposed hypothesis-testing
framework. We select the article of Michaud, Llerena, and Joly (2012) as our reference paper, because
of the advantages to work directly with the authors of the paper. The work ofMichaud, Llerena, and Joly
(2012) is focused on investigation of consumers’ willingness to pay (WTP) for environmental attributes
of a non-food agricultural products, taking roses as example. Authors constructed an experimental
framework to derive the premium the testing subjects were ready to pay for such environmental attributes
as lower carbon imprint and ecological labelling, certifying the source of the environmentally friendly
practices. That study explored individual preferences for roses with an eco-label and a carbon footprint
using discrete choice modelling techniques and real economic incentives resulting in real purchases of
roses. The gathered dataset was analysed with a mixed logit model demonstrating notorious premiums
for both attributes. We will benefit of the obtained results to demonstrate all of the complexity of a
proposed theory-testing framework, its functionality and perspectives.

The present report is divided into two main parts. The first section presents the chosen context for this
work followed by short presentations of all the theoretical aspects which play their major roles in this
study, tracing at the same time parallels with the context. The second part presents the results of all the
results step-by-step, demonstrating the functionality of the designed framework. Each of the sections
has an identical logical structure of presentation of the framework’s components in the successive order:
starting with the behavioural modelling and data related questions, directly followed by the models’
presentation and the performance measures. The final section concludes.
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1 The framework design

This section introduces the design and provides an example of available functionality of an integrated
experimental framework for model performance exploration. In doing so, we strive to reduce and sim-
plify the framework, illustrating the theoretical discussion of the eventual questions that arise during
the model evaluation.

There exist multiple ways to provide an illustration for the generalized framework due to its extended
flexibility on different levels of scientific procedure. Nevertheless, in our work we are attempting to
extend this illustrative objective to all the possible levels available by the devised tool-set. The idea
is to demonstrate all the features of different frameworks’ layers in the context of a performance com-
parison. First of all, there is a particular interest to demonstrate the advantages of possibility to test
different choice settings, providing different artificial datasets for exploration. What is more, it would
be interesting to contrast different mathematical models and algorithms used to study these datasets and
evaluate their performance using different criteria, which will allow for more flexibility.

The work of Michaud, Llerena, and Joly (2012) investigates the impacts of the environmental charac-
teristics in the context of a consumer choice of non-alimentary agricultural goods taking roses as an
example. We will inspire ourselves with the context, assumptions and findings of this study and build
our work around these pre-sets. We may be interested to observe how some minor changes in the model
may affect the results, which pushes us to consider some simple, yet educative changes in the model.

The organisation of this section is as follows. First of all, we introduce in detail the context and dis-
cuss which features and characteristics to retain give the Michaud, Llerena, and Joly (2012) work. We
will provide a description of the procedure adopted for this illustration procedure as well. After brief
overview of the original article and delimitation of the general assumptions we will provide a detailed
discussion over every single major part of testing framework with extensive argumentation. Starting
with the presentation of the underlying concepts of the decision theories and dataset generation proce-
dure we will continue with a discussion of different modelling techniques and a detailed description of
themodels to be tested over the artificial dataset. Finally, wewill provide a panorama of the performance
assessment metrics, before switching over to application.

1.1 Context: Willingness to pay for environmental attributes of non-food agricul-
tural products

We choose to use the estimated results of Michaud, Llerena, and Joly (2012) as a starting point for our
work, copying the context of the study with some minor adjustments. In this part we will provide only
a general overview of the assumptions made in the article “as is”. This description will serve us as a
reference for future discussion, because afterwards we will be presenting our changes, modifications
and additions to these given our needs.
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In the article of Michaud, Llerena, and Joly (2012) the choice of roses as the non-food agricultural prod-
uct was determined by several criteria. Initially, roses were supposed by authors to have characteristics
that respect the limitations imposed by the experimental economics. These are popular widespread
products known to all the test subjects, being not easily available at the same time. What is more, the
production of roses have been the object of a growing attention because of potential environmental
damages inflicted in the process. This last feature made them a perfect product to explore the impacts
of the environmental properties on the consumer choice.

Two environmental aspects of roses’ production were explored by Michaud, Llerena, and Joly (2012).
The first one, eco-labelling, described the cultivation environment and conditions, including the use
of pesticides, fertilizers, as well as reasonable consumption of water and energy. This labelling was
adopted shortly before 2010 by some of the producers, who attempted to reduce the harm to environ-
ment, to signal their eco-responsible position to consumer. Authors mention such dedicated eco-labels
as the American VeriFlora “Certified Sustainably Grown” label guaranteeing the low environmental
impact of roses’ production, or the European equivalent: “Fair Flowers Fair Plants” (FFP) label cer-
tifying the environmental performance of agricultures by several criteria such as the “fertilizer use,
crop production, energy efficiency, waste management and a number of social requirements”. The
second chosen environmental feature of roses was their carbon footprint, measured by the greenhouse
gases emissions during the cultivation and transportation. This criteria being particularly important
because of an increase of roses production in developing countries in Africa, South America and Asia,
which are later sold on the European market, resulting in immense amount of CO2 emissions during
the transportation.

The authors assumed that the individuals had heterogeneous preferences for the environmental attributes
of roses. In other words, it was assumed that each individual had his personal attitude to the eco-label
and carbon footprint of the roses, determined by their awareness of the environmental issues. The exper-
imental design took into account this assumed dimension through observation of multiple simultaneous
choices for each of the subjects in order to capture individual specific elements. To model such complex
repeated choice framework, authors used well developed RUM behavioural theory (McFadden 2001)
paired with the power of the mixed logit model, which is a generalisation of a simple logit model,
allowing for more flexibility, such as random effects modelling.

The assumptions made by the researchers may be roughly divided into two categories, which will define
the structure of this section. First one comprises the behavioural assumptions concerning the decision-
making procedure, which encompasses the different restrictions on the experimental design, individual’s
behavioural strategy and choice preferences, which aim at elimination of various behavioural biases and
simplification of future mathematical analysis and data treatment. The second regroups the assump-
tions related to the modelling process. It encompasses theoretical assumptions imposing restrictions
on the mathematical model, its choice and estimation techniques. Finally, we present the target effects
computed by the researchers in the context of the study, as the main objective was not the general ap-
proximation and modelling of a consumer choice, but rather extraction of particular values of interest
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such as willingness to pay for the alternatives’ attributes.

1.1.1 Experimental design

First of all, we should start with a description of the experimental design framework introduced by
the authors in order to obtain valid results. This would allow to correctly implement such complex
econometric model as mixed logit on the next stage. The experimental design assumed that individuals
make their decisions based on the perceived utility of a particular alternative, following the traditional
restrictions described by McFadden (2001).

Because the study collected data through a controlled experiment setting, some restrictions were im-
posed on the observed characteristics in order to simplify the analysis. The roses, as available alterna-
tives, were defined by three attributes observed by subjects:

• the FFP EU eco-label (Label)
• the carbon footprint (Carbon)
• the price (Price)

These attributes varied across the available options of the alternatives present in different choice sets.
Precise written instructions were transmitted to the subjects making available information about the
criteria certified by the FFP labelling as well as some briefing about the organization issuing this labels
(the Horticultural Commodity Board). These data-sheets provided as well a summary of Cranfield
University’s report about roses’ carbon footprint. Both these attributes (eco-label and carbon footprint)
were understood as a binary variables valuing 0 or 1 depending on the presence of a particular attribute
for a particular rose. Finally, in addition to the two environmental attributes, a price was introduced into
experimental design, which varied by 0.50€ between 1.50€ and 4.50€, creating this way a seven level
factor. The table 1 regroups the main characteristics for these variables.

Table 1: Alternatives’ attributes

Statistic Levels Min Max Step

Price 7 1.5€ 4.5€ 0.5€
Label 2 0 1 1
Carbon 2 0 1 1

In order to avoid the substitution bias1 as the subjects might have decided to purchase a rose for the
experiment somewhere else for a lower price rather than in the laboratory a special measure was intro-
duced into experimental design. In the experimental literature the implemented method is known as the

1The substitution bias occurs when the individuals tend to switch to the less expensive alternative available, given the
relative prices changes. In the experiment context, the customers might have preferred to buy identically priced roses in a
better placed store, instead of waiting for bought in experiment roses to be delivered.
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“field price censoring”, which means that the values used in the laboratory are censored according to
the field market price (Harrison, Harstad, and Rutström 2004).

The elicitation of the individual preferences for the different roses’ attributes was ensured through a
combination of discrete choice questions and real economic incentives. The stated choice surveys are
a popular choice for study of consumer preferences for public and private goods. The discrete choice
methodology and experimental design setting provides the advantage to vary several attributes of a par-
ticular product and to estimate the marginal rates of substitution between these attributes. A particular
accent was made on the derivation of the willingness to pay (WTP) for specified features of interest.
This tool provides a great flexibility, allowing to test different scenarios all of which could be presented
in a single study, although, there is always a danger that the choices made by consumers in experimental
surveys might not reflect their real preferences. The participants to hypothetical surveys were generally
stating higher WTP values for private and public goods, leading to a potential bias in the estimates
when compared to the real world. Following this reasoning the authors have introduced incentives into
their choice experiment linking this way the participants’ decisions to real consequences by resulting in
acquisition of randomly chosen alternative from the pool of chosen alternatives.

The choice set generation was devised with intention to resemble to maximum the actual purchase
decisions with the inclusion of a “do not buy” option, in order not to force the subjects to buy anything.
In other words, the presence of such alternative ensured that subjects were never pushed to purchase a
rose, imitating this way a real shopping situation, when consumers always have the possibility of not
purchasing any roses if none of the alternatives suited them in a particular choice set. Consumers were
asked to make twelve different choices displayed.

In the case of prices allocation random design techniques were used to configure the subsets of choice
sets among subjects. The two level factors standing for the roses’ environmental attributes could be
regrouped into four different combinations defining four types of roses. The experimental design intro-
duced the roses in pairs to subjects, creating this way several three alternatives choice sets. Even though
the different combinations of two roses potentially create sixteen different alternative pairs, the authors
limited their search to six completely different pairs of roses. The resulting experimental sets of six
choice sets were repeated twice resulting in twelve cards, which were then introduced to subjects. All
the cards were distributed simultaneously so that consumers could make their choices in any order. In-
dividuals were informed from the beginning that one of their decisions would be randomly drawn at the
end of the experiment. Finally, the random draw resulted in the purchase of a real rose offered against
payment, this condition ensured that the subjects considered each choice made during the experiment
as a real purchase decision, weighting carefully the available alternatives.

Generic titles were randomly allocated to the roses within choice sets: rose A and rose B respectively.
Such “unbranded” alternatives’ titles allowed to ensure that they can only be differentiated according
to their attribute combinations. This way the choice between a “Rose A” and a “Rose B” can only be
defined by their attributes alone (Label, Carbon footprint and Price), but not by their label. The same
strategy applied to prices, which were randomly assigned to the alternatives within the choice sets by a
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random number generator setting prices within the defined limits.

Taking into account the experimental design we are going to follow the authors’ ideas in simulating
an identical experimental design with statistical methods available. The artificial choice situation will
assume three alternatives: two unlabelled ones doted with a common utility function, while the third
is the baseline alternative of “no choice” option. In order to study the heterogeneity of the individual
preferences the subjects should be placed in a situation of repeated choice, facing several choice situa-
tion. The alternatives will be described by three attributes, while individuals will be distinguished by
four characteristics.

1.1.2 Econometric model

Consumers’ decisions are analysed with the discrete choice framework based on the utility maximisa-
tion assumption. This framework assumes that consumers associate each alternative in a choice set with
a utility level and choose the option, which maximises this utility. The general estimation framework
of the Random Utility Model (RUM) proposed by McFadden (1974) provides the opportunity to esti-
mate the effects of product attributes and individual characteristics and to compute willingness to pay
indicators.

Authors implemented the mixed logistic regression with random, correlated attributes’ effects to esti-
mate the willingness to pay of the individuals for each of the explored attributes of a rose. The mixed
logit model takes into account the repeated nature of the choices made by the respondents. This model
relaxes the Independence from Irrelevant Alternatives (IIA) hypothesis of the more traditional multi-
nomial logit, allowing the random components of the alternatives to be correlated, at the same time the
error terms are still considered to be identically distributed (Greene 2008). The alternative specific pa-
rameters are assumed to be randomly distributed across the population contrary to the fixed parameters
specification for a traditional multinomial logit model. In other words, the mixed logit model provides
the opportunity to consider heterogeneous effects among individuals by allowing taste parameters to
vary in the population. The authors suppose that the random taste heterogeneity should be evident in
response to the eco-label and the carbon footprint attributes of the roses, because of different level of
environmental awareness across population. Following the ideas of Bernard and Bernard (2009) the
authors introduce the cross-product for eco-labelling and carbon footprint as a random parameter as
well in attempt to test the effect of the simultaneous presence of both of these attributes on consumer
choice. This addition results in a total of four random parameters to be estimated: the two parameters
describing roses attributes, their cross-product and the “Buy” option dummy variable which captures
heterogeneity in consumers’ preferences for a rose. All of the random parameters associated with the
roses’ attributes are assumed to follow normal distribution, which is traditional for the procedure of
mixed logit modelling. Given that the normal distribution is symmetric and unbounded, the resulting
model allows for both positive and negative effects to exist inside population. To simplify the analysis
and assuming the reasoning of Revelt and Train (1998), the authors restrict the price coefficient to be
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fixed in the population. Such choice of price’s effects specification ensures that all respondents have a
negative price coefficient, leading to a normally distributed estimate of willingness to pay.

The systematic part of the utility relatively to the “No buy” option was expressed through a linear in
parameters form:

Vij = αi,Buy + βBuy,SexSexi + βBuy,AgeAgei + βBuy,IncomeIncomei + βBuy,HabitHabiti+
+ γP ricePriceij + γi,LabelLabelij + γi,CarbonCarbonij + γi,Label×CarbonLabel × Carbonij (1)

Where j was an alternative among the available choice set of three options: buy rose A, buy rose B
or do not buy anything. The dummy variable αi,Buy was introduced to capture the effect of a decision
to buy a rose, while the vectors of β and γ regrouped the effect of individual characteristics and the
attributes of alternatives respectively.

In their article Michaud, Llerena, and Joly (2012) did not provide an extensive demonstration or de-
scription of the model selection procedure. What is more, we have little information as to what model
comparison and validation techniques were implemented. Only the final model, chosen by authors, was
presented to us, which brings some limitations for our study.

In the end of this subsection, it is important to highlight that the mixed logit models are usually specified
with uncorrelated random effects, although it’s not the case in the context of this particular study. The
authors introduce correlation between the normally distributed alternative specific coefficients: αi,Buy,
γi,Label, γi,Carbon and γi,Label×Carbon.

1.1.3 Willingness to pay and premiums

The only target metrics present in the article were the willingness to pay (WTP) and premiums for
particular attributes. The former could be read as the value the consumers are willing to pay for a
rose. The latter may be translated as how much consumers are ready to pay for a unit change of a given
attribute of the product. Both theWTP for a product and the premiums can be computed as the marginal
rates of substitution between the quantity expressed by the attributes and the price (Louviere, Hensher,
and Swait 2000). The WTP for a rose in this case could be expressed as:

WTP =
∆V

∆BUY
∆V

∆P rice

= −αBuy

βP rice

(2)

Where ∆V
∆BUY

is the difference in the relative utility V associated with the “Buy” and “No buy” choices.
The premiums for the particular attributes Zk of a given product could be identically expressed as:
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WTP =
∆V
∆Zk

∆V
∆P rice

(3)

Since the random parameters of the utility function were assumed to be correlated, authors used Krinsky
and Robb parametric bootstrapping method (Krinsky and Robb 1986) with 1000 draws to estimate the
standard deviations and confidence intervals for these parameters.

1.2 Theories of consumer choice

Once we have presented the assumed context for this study, we will dive further into details and present
all the key behavioural elements of this work one by one. In this section we are going to present in
detail the questions and problematic associated with the behavioural modelling of the consumer choice.
Particularly, we are going to introduce the terminology to be used in this work, some of which was
already partially presented in the previous section.

1.2.1 General terminology

For the presentation of general methodology we are going to adopt the ideas of De Palma et al. (2011),
introducing this way the principal concepts and main components of the decision theory. Traditionally
it comprises several components: the decision makers or individuals, described by their characteristics;
a set (or sets) of available alternatives, defined by their attributes; and a decision rule or set of rules,
describing the procedure adopted by the individuals to make actual decisions.

The individuals are supposed to have different tastes, and therefore we must explicitly treat the differ-
ences in the decision-making processes among individuals, doted with different characteristics. There-
fore the characteristicsXi of the decision maker i constitute an important part of the problem.

The decision maker chooses from a finite and countable set of alternatives {ωi, . . . , ωj}, which consists
of the entire universal set of alternatives {ω1, . . . , ωr} ∈ Ω as defined by the particular choice envi-
ronment. A decision maker i may only consider a subset of this universal set Ω, and this consideration
set is conventionally named a choice set Ωi. In discrete choice analysis, each alternative ωj is charac-
terized by its attributes Zj . For example, in the particular case study the observed attributes of roses are
their price, the eco-label and the relative carbon footprint. Decision makers evaluate the attractiveness
of an alternative based on these attribute values before making their choice.

Finally, the decision rule describes the process by which the decision maker i evaluates the available
information Zj∀ωj ∈ Ωi and arrives at a unique choice. There is a wide range of available decision
rules, including dominance, satisfaction, lexicographic, elimination by aspect, habitual, imitation, and
utility (De Palma et al. 2011). However, only the latter class is most often associated with discrete
choice analysis because to its extensive use in the consumer choice behaviour modelling. The utility
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theory takes its roots from the microeconomic consumer theory and is adjusted according to the needs
of the modeller. A utility Uij represents the attractiveness of a particular alternative ωj for a particular
individual j in a scalar form.

1.2.2 Random utility maximisation models

The random utility maximisation models (RUM) were introduced and developed by McFadden (1974).
The theory of optimization implies that this is a classical indirect utility function, with the following
properties: “it has a closed graph and is quasi-convex and homogeneous of degree zero in the
economic variables” (McFadden 2001). The last element in applying the standard model to discrete
choice is to require the consumer’s choice among the feasible alternatives to maximize conditional
indirect utility based on some reference alternative, rather than absolute utility.

In our work we use the notation introduced by Bhat (1995) and later adopted by Cascetta (2009) when
representing the utility functions as they are more simple and easy to understand compared to initial
McFadden (1974) specification. The functional form of the canonical indirect utility function depends
on the structure of preferences, including the trade-off between different available alternatives. The
perceived utility Uij can be expressed as the sum of two terms: a systematic utility and a random
residual term:

Uij = Vij + ηij (4)

WhereUij stand for utility, Vij at the same time represent its deterministic part defined by some fixed de-
terministic function and ηij reflects some unobserved random effects. The latter having being a random
variable following Gumble distribution, parametrized with (µ = 0, θ = 1), which may be interpreted
as:

ηij = −log(−log(εij)) (5)

With εij a variable uniformly distributed and independent across alternatives, the disturbances are in-
dependently identically distributed Extreme Values (EV). This produces a MNL model in which the
systematic utility has a linear in parameters form for each alternative ωj ∈ Ω. The systematic util-
ity Vij represents the mean utility perceived by all decision-makers having the same choice context
decision-maker.

Vij = f(Xi, Xj) + ηij (6)

Traditionally in the most simple models this deterministic utility part is represented by some linear in
parameters function:
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f(Xi, Zj) = αj + βjXi + γZj (7)

One family of RUM-consistent discrete choice models that is very flexible is the random parameters or
mixed multinomial logit (MMNL or more often denoted as ML) model, which is used in the Michaud,
Llerena, and Joly (2012) work. The random parameters set-up assumes γ effects to be randomly dis-
tributed across individuals, usually following normal random distribution. In some cases, these param-
eters may be assumed to be correlated, which potentially reflects better the real world.

In our study we are going to explore two equally possible in real life specification for data generation
procedure: one assuming random effects for alternative specific variables and another keeping these
parameters fixed. Speaking about the utility definition, we assume, that the work of Michaud, Llerena,
and Joly (2012) managed to obtain correct estimates for a relative utility function of roses and we take
this particular function structure in order to generate utilities for a given dataset. This assumption will
offer us a baseline and target effects’ values to compare our estimation with.

1.3 Different datasets available in research

There exist numerous difficult questions related to the models’ comparison task such as performance
measures’ choice or models’ specification, but beforehand there always stand the data related questions.
It is due to the fact that all the other questions and the validity of the obtained responses rely entirely on
the choice of the inputs and the data available. Many of the existing applied econometrics papers use the
most simple specification of the Multinomial Logistic Regression (MNL), that may lead to erroneous
results and conclusions.

Many of the models’ performances and performance measures depend on the dataset properties and
the particular application case. This means that in comparison of different mathematical models, im-
plementing some complex tools such as a neural network models (NN), for example, we should pay
attention to use appropriate data-model to estimate such model. This particular problem, as many oth-
ers related to the models’ performance evaluation, was extensively described by Japkowicz and Shah
(2011).

When it comes to model comparison, the additional requirements arise to the validation datasets and
we should find answers to several questions:

• What datasets should be used?
• Should the model be validated on one dataset or several several?
• Should a synthetic or real-world data be used?
• If several dataset are chosen, which ones should be used on different validation steps?
• How the algorithms should be tuned face to the dataset selection?
• What properties the studied data should have?
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Moreover, different models may require different data adaptation methods to be implemented. For
example, the popular multinomial logistic regression allows to take into account the individual char-
acteristics as well as the attributes of the various alternatives issued from some limited set. The ML
approaches, such as Support VectorMachines or Linear Discriminant Analysis does not allow such flex-
ibility. For these models, even if we can represent each point in the modelled space as a combination of
individual characteristics and attributes of alternatives, we can only classify the instances by iterative
binary separation (Tsoumakas and Katakis 2007). Consequently, the questions of the dataset properties
arises, which are tightly intertwined with the available models choice and the implemented learning
techniques.

In this section we will discuss the different existing approaches to data management in theory testing
and hypothesis verification. Firstly, we will present the general questions and problematics. Then a
solution to be implemented in this particular study will be described and discussed.

1.3.1 Theoretical concerns in dataset selection

The data related problematic arise firstly duringmodel generation step of the standard statistical learning
procedure and persists till the stage of the model comparison. Speaking about the model validation,
the usual rule of thumb approach is the cross-validation technique, although some advanced users
suggest that this method may not be always appropriate (Japkowicz and Shah 2011). In econometrics,
for example, as well as in many other applied disciplines, researches tend to oversimplify the validation
step by completely avoiding this important step, or by performing only single-fold validation. On the
other hand, many advanced statistical model and ML methods require a separate tuning step during
model set-up, which alone requires verification and validation on some dataset. It remains questionable
whether the overall model validation dataset and the dataset used for fine tuning should be the same or
not.

Of particular interest for our study is the ongoing discussion between two sides of the statisticians’
community, mentioned by Japkowicz and Shah (2011), about whether the algorithms and statistical
models should be compared over the real world datasets or using some synthetically generated data.
On one hand, the datasets composed of the observations or obtained through controlled experiments
perfectly reflect the real world situation, being at the same time too case specific. In other words, it
is always dubious that a model or a theory verified for one particular real dataset has any external
validity. The obtained insights can rarely be extended over a larger population. Artificial data can
be designed in a controlled manner to study specific aspects of the performance of algorithms and
models. Moreover, the artificial data is highly useful for testing particular theories, for example, the
behavioural theories or their impact on different models. Consequently such data may allow for tighter
control, which gives rise to more carefully constructed and more enlightening experiments. Although,
the real data are hard to obtain and are difficult to analyse, the artificial data introduces the danger of the
problem’s oversimplification. In our case study these features are of utmost importance, because, given
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the framework, the artificial data enables us to test desired hypothesis in a controlled environment.

Generation of synthetic datasets is a common practice in many research areas. Such data is often gen-
erated to meet specific needs or certain conditions that may not be easily found in the original, real
data. The nature of the data varies according to the application filed and includes text, graphs, social or
weather data, among many others. In this particular work we, for example, face the consumer choice
data, which describes individuals and their choice sets.
The common process to create such synthetic datasets is to implement small scripts or programs, re-
stricted to limited problems or to a specific application.

As Garrow (2010) points it out, even observing the growing use of artificial data in discrete choice and
classification analysis, “little is known about how the methodology used to generate synthetic datasets
influences the properties of parameter estimates and the validity of results based on these estimates”.
That is, there are two potential sources of biases when using synthetic discrete choice data:

• The unknown effect of the dataset generation method;
• The parameter estimation bias.

The first one is rather complex and has many different element, that could potentially affect the esti-
mated results. There exist different methods for artificial dataset generation, starting with use of robots
(artificial observation instances) and ending with Markov Chains Monte Carlo simulation and Neural
Network use. One of the most evident errors in this case could arise from the fact, that the closer the
estimated model is to the model implemented to generate the dataset, the better would be the observed
results, which may not be true in the real world.

The second bias arises in the situation where the real world parameters are used to generate artificial
dataset, exactly as in this particular work. The potential difference between the ideal simulated situation
and the real world situation lead to different choice structures. The theoretical model supporting the
data-generation process may be potentially erroneous, leading to erroneous conclusions if only such
dataset was used for incorrect purpose.

1.3.2 Artificial dataset generation procedure

For the objectives of this study we assume the best option is to generate our own artificial dataset
based on a predefined utility function and given a predetermined statistical properties for individual
characteristics and alternatives’ attributes. Such set-up ensures that we know exactly the data generation
process and have all the control over the parameters and experimental design. As was mentioned above,
this choicemay be dangerous in terms of justification of the resulting external validity of obtained results
in application to any other real world dataset. However we ensure this way, that the obtained results
could be potentially compared with the baseline target parameters and the initial effects are observed to
us.
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First step in the dataset generation is the generation of the experimental design framework, imitating
the original choice set-up, as described in the Michaud, Llerena, and Joly (2012) article. Our first steps
are identical to the original work, as we start with the generation of all possible combinations of binary
factors for our alternatives: roses described by two binary attributes and their price. There exists only
four different roses types, if described by their binary attributes alone, as can be seen in the table 2.

Table 2: Possible attributes of roses

Type Eco-label Carbon footprint

1 0 0
2 0 1
3 1 0
4 1 1

Given a multiple choice context when an individual is choosing among three alternatives: two different
roses, defined by labels A and B; and a “No buy” option. Consequently there exist multiple possibilities
to regroup two roses into a choice set, for instance, in Michaud, Llerena, and Joly (2012) are generating
six choice sets ensuring that roses in a given choice set always have different attributes, while in prac-
tice there exist sixteen possible combination of two roses given they are described by two binary factor
variables. The choice of the choice set delimitation in the article could be understood as the individuals
participating in the stated choice experiment are scarcely interested in answering multiple questions,
while six or twelve choices to consider appear to be a reasonable number. On the contrary, our experi-
mental artificial set-up allows to ask as many questions to as many individuals as we want. For example
we can generate 7×4×7×4 = 784 choice sets for each individual, containing all the possible combi-
nation of two different roses, each described by two binary factor attributes as well as their price, which
has 7 different levels (varying by 0.50€ in a range from 1.50€ to 4.50€). However, such excessive set-up
can have its toll on the computation times, being in the same time absolutely unreasonable and unreal-
istic, were we to replicate our results in a stated choice experiment. Consequently, for price allocation
we are going to implement the same strategy as the authors of the article, meaning that the prices will
be randomly assigned inside the choice sets, while the choice sets will follow a complete full-factorial
design given two alternatives with attributes. The following table 3 demonstrates this idea.

The prices are randomly allocated within given choice sets, although there are some subtleties, which
were discovered in attempt to replicate the variability achieved in the original work. The main idea is to
ensure that both groups of roses (A and B) will have identical characteristics, which is important for the
later model estimation. At the same time, we are interested in providing the test subjects with identical
choice sets to avoid eventual bias, which may be important if we were facing a small number of observed
individuals. Consequently, we randomly allocate prices within a given choice set and distribute these
identical choice sets to all of the individuals. The variability in the prices across alternatives is achieved
through a replication of this proceduren times. The resulting statistics and distribution will be discussed
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Table 3: Choice sets attributes’ combinations

Rose A Rose B
Choice set Eco-label Carbon footprint Eco-label Carbon footprint

1 0 0 0 0
2 0 0 0 1
3 0 0 1 0

...
15 1 1 1 0
16 1 1 1 1

in the second part of the work, where we will focus our attention on the applied part.

On the next step we generate a population of “robots”, or artificial individuals, who will be making
their choices provided the described above choice sets. It is important as well to mention, that the
distributions we use to generate the data are theoretical rather than empirical ones. The individuals are
generated based on the descriptive statistics for population available in the reference paper. This choice
is done based on the final objective of the proposed testing framework to allow the researchers to test and
verify their hypothesis related to the behavioural assumptions, modelling and performance estimation
in the consumer choice experimental context. We assume that characteristics of the individuals are
normally distributed, which is rarely the case in practice, where skewed distributions are dominant.
Such choice imitates a replication attempt of a given empirical paper given the information available in
the article only, which are usually the means and variances, rather than complete empirical distribution
descriptions.

Finally, having at our disposal a set of individuals as well as a number of choice sets for the individuals
to consider, we define the utility function based on the estimates of the authors. Such choice implies,
that we assume all the hypothesis made when treating the original dataset to be verified for the artificial
model. The utility functions are assumed as described in the preceding subsection to conform with the
standard random utility maximisation (RUM) definition as the individuals are striving to maximise their
perceived utility given their characteristics and the observed attributes of the alternatives. The utility is
linear in parameters with additive error term.

Following this procedure we generate two synthetic datasets: one the most basic one with only fixed
effects present, while the other includes random effects for the alternative specific attributes. These
datasets are then used to estimate, test and compare the models’ performances.

To summarise, this section we will once again list the key hypothesis we make in the artificial dataset
creation:

• The dataset comprises:
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– 4 individual characteristics (Sex, Age,Habit and Salary)
– 3 alternative’s attributes (Price, Label and Carbon)
– 2 product variables (Buy dummy variable and LC = Label × Carbon cross-product)

• The individuals are assumed to maximise their utility, when making their choices, which corre-
sponds to RUM behavioural framework;

• The utility functions are linear, additive in parameters with an additive error term ε;
• The error term is assumed to be iid. across population and follow a Gumble distribution: ε ∼
G(0, 1);

• The individuals may (or may not) express heterogeneous preferences for the environmental at-
tributes (eco-Label and Carbon footprint), which results in two different artificial datasets;

• In the case of heterogeneous preferences a total of four random parameters are assumed to be
correlated (Buy dummy, Label,Carbon and their cross-product LC) and respect a multivariate
normal distribution.

The detailed procedure of the choice modelling, as well as the exact values of the parameters and some
eventual difficulties in the dataset generation are described in the applied section of this work.

1.4 Statistical tools for choice modelling

As it was mentioned, there are different fields of application ranging from econometrics (Agresti 2013)
to machine learning (Zielesny 2011), encompassing eventually such fields as transportation systems
analysis (Cascetta 2009) and logistics (De Palma et al. 2011), actuarial science (Denuit and Trufin
2019), preference learning (Fürnkranz and Hüllermeier 2010), psychology, sociology and more). The
more generalisedmodels are regrouped under the statistical models label (Hastie, Tibshirani, and Fried-
man 2009), but nevertheless they are mostly limited and are not taking into account many of the field
specific questions. Taking into account that our study is mostly axed towards the study of the consumer
choice data and related discrete choice problems it is important to somehow limit the study’s scope to
a number of selected models, without loosing the context.

Speaking about the econometrics models, this field of applied statistics alone has a number of questions
to answer before proceeding. For example, we may question the particular task that we are performing
while applying the econometric models to some discrete choice problematic. Usually the economists
are interested in deciphering and understanding the underlying process (Athey and Imbens 2019), even
though there is a long lasting debate on the validity of obtained measures as well as causality implica-
tions (Chen and Pearl 2013): “The source of confusion surrounding econometric models stems from
the lack of a precise mathematical language to express causal concepts.” This results in completely
different cultures of the data exploration and study objectives. This particular problem was largely
addressed by different researches, among which: Athey and Imbens (2019), Mullainathan and Spiess
(2017), Agrawal, Gans, and Goldfarb (2019), Varian (2014) and Breiman and others (2001). Even as
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there are some attempts to merge all the existing branches and approaches to statistical modelling into
some sort of a uniform culture (Donoho 2017), the scientific community has a long route to make in
order to achieve this objective. There exist as well many other more subtle problems in the econometric
field. For example, different error term and different link function specifications (Bouscasse, Joly, and
Peyhardi 2019) in econometrics models rise the question of what exactly we may consider as single
entry to our list of models to evaluate.

On the other hand, speaking about the ML counterpart, the focus is generally made on the predictive
precision if we were to focus our attention on the supervised ML sub-field (Mullainathan and Spiess
2017). In their quest to achieve the best predictive precision with a particular model, the machine
learning scientists study not only the theoretical models themselves, but the algorithms used to estimate
these models (Zielesny 2011), that potentially augments the dimensions to take into consideration in
this particular work. Moreover, not only there exist a confusion on what algorithms are to be associated
with each particular model (or potentially a number of models defined by model/algorithm pairs), but
many models are specified using a set of hyper-parameters, which are to be chosen by the researcher.
This aspect immensely complexifies the task for us, as it is uncertain how exactly should we define the
values of these arbitrary chosen parameters. It’s worth mentioning that in many cases these parameters
are case specific and may vary from one application to another, resulting in different performances over
different datasets.

As it is mentioned by Kotsiantis, Zaharakis, and Pintelas (2006) the choice of which specific learning
algorithm to be implemented is a critical step for any work, and a separate subset of training dataset
is usually used for this task. The classifier’s evaluation is most often based on prediction accuracy,
which describes the percentage of correct predictions among their total number, which requires some
unrelated data to be calculated as out of sample estimates provide more reliable information about the
performance of a particular algorithm.

This section will be opened by a brief introduction to the multitude of the existing models, which is a
particularly important point, given the scope of the study. Each and every dataset, each and every rela-
tionship between several variables may bemodelled with different techniques and different assumptions.
There is a tremendous amount of work to be done in order to systematise all the existing mathematical
models, not speaking about their extensions or their numerical implementations. The first part of this
section will demonstrate the complexity of the models’ choice given an application context. Only then,
we are going to present the selected models and their mathematical formulation: the MNL model, the
MMNL model and their artificial NN counterpart.

1.4.1 Taxonomy of statistical models

Before proceeding with a discussion concerning eventual problems and difficulties affecting the mod-
elling part of every empirical study, we will provide an overview of different families of models, en-
compassing both the econometrics and machine learning fields. The following presentation is a gen-
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Figure 2: Taxonomy as proposed by Kotsiantis (2006)
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eralised vision of the existing discrete modelling techniques, which can be used for classification tasks.
As general as it is, this part respect the setting of the discrete choice behavioural modelling.

There exist several possibilities to divide ML algorithms into groups in order to provide an exhaustive
and complete taxonomy of this field and the same reasoning may be applied to econometric models.
However, the existing taxonomies are rarely complete and focus mostly on one or several grouping
aspects. They define the general structure of a particular taxonomy, but rarely take into account a suffi-
cient number of different descriptive features, which may vary across statistical models. For example,
wemay take a look at Kotsiantis, Zaharakis, and Pintelas (2006) work attempting to provide an overview
of different classification techniques on figure 2.

This taxonomy is fairly simple and encompasses a large number of models’ families specifically de-
signed for classification.
In the works of Hastie, Tibshirani, and Friedman (2009), Cascetta (2009) and Ayodele (2010) we may
see some more recent attempts to organise the existing models into a single hierarchically related struc-
ture, although neither of known to the author works offers sufficiently extended reasoning over the
relations between different classification techniques (several of the resulting taxonomies could be seen
in the Appendix A). Moreover, not only the taxonomies may be based on the models’ themselves, but
it can be constructed around their algorithmic properties, as in Mullainathan and Spiess (2017). The
resulting tree is represented on the figure 3.

In attempt to generalize the existing taxonomies and unite somehow the different classification models
and techniques, we may roughly divide them in categories by different criteria. Usually there is no
evident hierarchical dependency between the different criteria, which immensely complexifies the task
of unified taxonomy construction.

First of all we may divide the models onto supervised and unsupervised learning techniques (Hastie,
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Figure 3: Taxonomy as proposed by Mullainathan (2017)
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Tibshirani, and Friedman 2009), which is the most widely used model separation in ML field. Some-
times this separation is complimented by various intermediate combinations of these two. The super-
vised methods have the goal to predict the value of an outcome measure based on a number of given
input measures, the outcome variable is available through the learning process to guide the researcher
and algorithm providing some baseline for testing. In the statistical literature the inputs are often called
the predictors, the inputs, the features, or the independent variables. In the econometrics the terms
explicative or endogenous variables are more popular. The outputs are denominated as responses, or,
in econometrics, the dependent or endogenous variables. The unsupervised learning is used without
any outcome measure available, with a main objective being to describe the associations and patterns
among a set of inputs. Such formulation of a learning task is rather implemented to describe how the
data is organized or clustered, find the underlying patterns and dependencies. As for the intermediate
models’ families, we may address the article of Ayodele (2010), where authors present different mixed
types of learning tasks, although this particular classification is not widely used. Among these models
we find: semi-supervised learning, combining both labelled and unlabelled examples to generate an
appropriate function or classifier; reinforcement learning, in which algorithm learns to interact with
the data generating source, given an observation of the world, in this context every action of model
has some impact in the environment, and the environment provides feedback that guides the learning
algorithm; The transduction is nearly identical to supervised learning, although instead of an attempt
to construct a function it tries to predict new outputs based on training inputs, training outputs, and
new inputs; and finally learning to learn, when the algorithm learns its own inductive bias based on
previous experience, which is a more advanced reinforcement learning problem.

Depending on the output variable structure we attempt to model we may examine the taxonomy pro-
posed by Agresti (2013). This taxonomy is based on the output variable format: it may be either discrete
or continuous. The continuous variables are the simplest case, where the output is assumed to be con-
tinuous on a given interval and in the statistical society is usually addressed as “regression” task. It’s
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counterpart, the discrete dependent variable is sometimes addressed as “classification” task and it is
the focus of this particular work. The categorical variable has a measurement scale consisting of a
set of categories and these variables are of many types: binary variables, nominal data, ordinal data or
count variables. The binary data assumes that there exist only two categories, often given the generic
labels “success” and “failure” numerically represented as 0 and 1. In the context of the undertaken
study we may imagine a binary variable representing the individual choice of “Buy” against “No buy”.
The nominal variables represent categories without a natural ordering and are measured on a nominal
scale. The perfect example for this data type is our choice set delimitation with several unordered and
independent options for individuals to consider: buy rose A, buy rose B or do not buy anything. For
nominal variables, the order of listing the categories is irrelevant to the statistical analysis, and the main
importance is given by the choice of baseline option, which is important for some of the statistical mod-
els. Ordinal data or ordered discrete data is an advanced representation for nominal data, where many
categorical variables do have ordered categories, representing some given preferences order, for exam-
ple. For these variables, the distances between categories are usually unknown and these intervals may
be uneven between different categories. An interval variable is one that does have numerical distances
between any two values. For most variables of this type, it is possible to compare two values by their
ratio, in which case the variable is also called a ratio variable. The final class if the count data, which
is specific for special cases of discrete-continuous data treatment.

By their structure the models may be separated into additive and non-additive as described in Hastie,
Tibshirani, and Friedman (2009), both of which could be understood either as additive (non-additive)
in error term or having a full additive (non-additive) structure. The first group encompasses different
regression and classification models where either the main function has additive structure:

f(X) = E(Y | X) (8)

Or the error term is additive defining the following model:

Y = f(X) + ε (9)

The non-additivemodels, also denominated asmultiplicativemodels, include all other eventual speci-
fications which could not be viewed or approximated by the additive relations. This particular separation
could be extended even further, as the models could be viewed as linear and non-linear in their pa-
rameters, or in their overall functional form. The former either assume that the regression function
E(Y | X) is linear, or that the linear model is a reasonable approximation for the particular situation.
The non-linear models usually regroup the various extensions and generalisations for the linear models
integrating various non-linear transformations.

One more possibility to separate different discrete choice models in particular is by taking into account
the probability structure they are attempting to model as mentioned in Jebara (2004). The models are
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separated into two major groups: generative and discriminative models, to which sometimes a third am-
biguous group of non-model techniques is added. The generative algorithms model the full structured
joint probability distribution over the examples and the labels given by P (Y,X). The models in this
context are typically cast in the language of graphical models such as Bayesian networks. The joint dis-
tribution modelling offers several attractive features such as the ability to deal effectively with missing
values, for example. On the other hand, the discriminativemethods such as support vector machines or
boosting algorithms focus only on the conditional relation of a label given the example, the probability
being written as P (Y | X). Their parametrized decision boundaries are optimized directly according
to the classification objective, encouraging a large margin separation of the classes. They often lead to
robust and highly accurate classifiers.

The estimates structure differs across model families as well, as described in Hastie, Tibshirani, and
Friedman (2009). There are two principal approaches to modelling given by parametric estimators,
which are usually easy to read and interpret, and their non-parametric counterpart, offering the best
results in terms of precision in most cases. The multitude of non-parametric regression techniques or
learning methods can be separated into a number of classes by the nature of the restrictions imposed, al-
though we are not going to provide an extensive description of all of them. What is more important, that
there exist different families of mixed models, profiting from both the parametric and non-parametric
feature. They are traditionally regrouped into a single family of semi-parametric models.

In this work we face a classification task which can be understood, given the context, as consumer choice
modelling. In order to correctly model the consumer choice structure we will need to use the models
allowing to work with nominal discrete data, because the consumer choices can not be positioned in
some logical order defining a continuous variable. The desire to obtain some explanatory results leads us
to restrict our choice to some additive and, moreover, linearmodels, whichwould identify the parameters
of a given relative utility function. The latter argument implies that the models should be parametric,
producing some exact estimates for given set of parameters.

1.4.2 Description of models to be compared

For our particular demonstrative task, which is restricted by the context of the study of Michaud, Ller-
ena, and Joly (2012), we have already described the advantages and reasons behind the unrelenting
theoretical assumptions concerning the behaviour of individual, as well as the dataset generation proce-
dure. The two resulting datasets allow us to explore the effects of the random effects of the alternatives’
attributes on the modelling. This possibility is particularly important, as usually researchers ignore the
possibility of random effects presence in the population and use more simple and conventional multino-
mial logistic models to model various discrete choice situations. However, we are not going to test only
one model over the obtained dataset, but rather introduce several models with different specifications
in order to demonstrate a vast potential of our testing framework and its advantages for research.

As we are exploring an over-simplified framework, we are going to study first two different traditional
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models each perfectly adapted to model one of the two generated datasets respectively. We are speaking
about the multinomial logistic regression, which should yield perfect fit results on a fixed effects dataset
and its counterpart - the mixed multinomial logistic regression, which should be the most performant
in the presence of random effects in the utility functions. Many of the existing applied econometrics
papers use the most simple specification of the Multinomial Logistic Regression (MNL), that may lead
to erroneous results and conclusions in the presence of random coefficients. Eventually these models
will allow us to verify, whether or not we are able to obtain the same results as at the input.

What is more, as the main objective of this work is to demonstrate proposed framework’s flexibility, we
are going to show how a completely alien model to econometrics, such as neural networks model, may
be explored and compared with more traditional tools. More precisely, we are going to use a neural
networks imitating the procedure of the multinomial logistic regression, while the other will be more
traditional multilayer neural network. It is because this model can be viewed as an even wider generali-
sation of the generalised additive models (GAM), that it is possible to simulate a model similar to MNL
and MMNL models. This choice was made because the seemingly identical model by its structure may
produce different results, depending on the implemented estimation technique. The NN techniques offer
us a great number of different algorithms which are more advanced than the algorithms traditionally
implemented in econometrics, which make us wonder, whether the changes in the estimation algorithm
will allow us to achieve better results.

In this part wewill attempt as well to introduce some common notation for the different models’ families,
issued from different disciplines.

1.4.2.1 Logistic regressions

Multi-category logit models simultaneously use all pairs of categories by specifying the odds of outcome
in one category instead of another (Agresti 2007). As described in Agresti (2013), many applications
of multinomial logit models relate to determining effects of explanatory variables on a subject’s choice
from a discrete set of options.

Multinomial Logit

Even if in the original article of Michaud, Llerena, and Joly (2012) a Mixed Logit model is used, here
we start our study with an introduction of the multinomial logistic regression (MNL) model, assuming
the fixed effects presence. This model will allow us to contrast the performances in case of both fixed
and random effect theoretical assumptions and compare them with a more advanced version of mixed
multinomial logistic regression and NN model. This assumption is relaxed in the Mixed Logit model
(ML or MMNL), where coefficients (or some of them) vary by individual (Agresti 2013). The logistic
regression models are derived from GLM specifications (Agresti 2007):

g(µi) =
∑

r

βrxir (10)
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Where g(.) is a link function, which is a logistic transformation for binary logistic model. It is important
to say that in this theoretical introduction we ignore in some extent the previously introduced terminol-
ogy: i still denotes the individual observations, laying in range of {1, . . . , N} in this case; the r index
here stands for different variables, because we do not use matrix notation for the reasons of simplicity.

Here we propose the econometric specification of a multinomial logit (MNL) model as described by
Cascetta (2009). The MNL model is one of the simplest random utility model (RUM) (McFadden
1974). This class of models relies on the hypothesis, that an individual n maximises his perceived
utility over a set of alternatives Ω, his utility determined by a fixed and a random parts, as described
earlier:

Uij = Vij + ηij where Vij = αj + βjXi + γZj (11)

Both β, representing the alternative specific individual coefficients, and γ, standing for population-
wide attributes effects, are assumed to be fixed across population, meaning that all the individuals have
identical preferences and are subject to identical effects. As precise in Agresti (2013) this approach
enables discrete-choice models to contain characteristics of the chooser and of the choices. It offers the
model an immense flexibility. The MNL is based on the assumption that the residuals ηij are identically
and independently distributed (iid.) as Gumbel random variables with zero mean and scale parameter
θ, which is usually equal to 1 (θ = 1). This calibration is done due to computational reasons, which
will be explained later in this part.

One of the key concepts when it comes tomodelling of the described above process is the latent variable
notion. The latent variable Y corresponds to its more meaningful counterpart V and is sometimes
understood as probability to choose a particular alternative. Obviously, as in the experimental context
we are unable to observe the real choice probabilities, this variable takes values 0 or 1 depending on
whether or not a particular alternative was chosen:

Yij = I(Vij > Vil|j 6= l, ∀l ∈ Ωi) (12)

Under the assumptionsmade here, the probability of choosing alternativeωj from among those available
{ω1, . . . , ωk} ∈ Ω by individual i, can be expressed in closed form as:

Pij = eVij/θ∑k
l=1 e

Vil/θ
(13)

The probability structure incorporates the theoretical assumptions of the finite choice set, the uniqueness
of the chosen alternative and the idea of utility maximisation. In a more comprehensive form, we
may say that an individual chooses a particular alternative ωj or simply j among all available for him
alternatives Ωi only if its utility is higher than any others’ alternative utility:
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Pij = P (ηil − ηij < Vij − Vil)∀l : l 6= j, l ∈ Ωi (14)

Knowing the structure of Vij and assuming the θ parameter for Gumble distribution of η is 1 we may
rewrite the probability as:

Pij = eαj+βjXi+γZj∑k
l=1 e

αl+βlXi+γZl
(15)

The alternative ωj in such case is denoted as reference alternative or baseline alternative and is subject
to several restriction for the sake of identifiability. The most important one is that we can not identify
all the parameters in the probability function, which require us to impose some restrictions over effects
structure. Traditionally (Agresti 2013) the reference level coefficients are assumed to be 0, reducing
this way the number of parameters to estimate. This choice has some important consequences for the
models’ interpretation, because the estimated effects for other alternatives in this case should be treated
as differences between the actual effects for the baseline alternative and other alternative respectively.
The estimated parameters are in fact:

Vij − Vil = (αj + βjXi + γZj) − (αl + βlXi + γZl) (16)

Where l 6= j and j, l ∈ Ωi. Which could be transformed into:

Vij − Vil = (αj − αl) + (βj − βl)Xi + γ(Zj − Zl) (17)

At this stage an important remark should be made, which concerns the understanding of individual
characteristic effects and alternatives’ attributes effects. It is theoretically possible to estimate a com-
mon individual effect for all the alternatives should we only wish to. The main idea lies in the correct
parametrisation of the initial framework. To achieve identifiability for the individual characteristic spe-
cific effects we should observe enough within choice set variance, as otherwise the resulting singularity
will incapacitate us to perform the estimation. In other words, we can understand this procedure as man-
ually setting the individual effects to 0 for our baseline alternative and estimating the resulting model.
Speaking about the changes in the dataset, the described above procedure is strictly equivalent to setting
the baseline alternative’s individual characteristics vector to zeros and estimating the resulting feature
matrix as alternative specific attributes.

The traditional vision of alternative specific individual characteristics effects, assuming βj = 0, is:

(βj − βl)Xi = −βlXi if βj = 0 (18)

The analogous vision for alternatives’ attributes effects, when reference attribute Zj is set to 0 is:
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γ(Zj − Zl) = −γZl if Zj = 0 (19)

As we can see βl and γ parameters are roughly equivalent in these two cases, assuming we are interested
in means over the set of individuals N and alternatives Ω.

Eil(−βlXi) = Eil(−γZl)∀i ∈ N, ∀l ∈ Ω (20)

Which under transformation equals to:

− El(βl)Ei(Xi) = −γEl(Zl) (21)

AssumingX and Z here is the same variable, varying across individuals and characteristics (Zj = 0),
we obtain that:

− El(βl)X = −γZ ⇒ El(βl) = γ (22)

This could be empirically confirmed through estimation of two different specifications and aggregation
of obtained results.

However, were we in need to estimate an individual for all the alternatives except the baseline one,
we could benefit from this transformation to do so. Such transformation allows us to take the multiple
choice context of the expiremental setup.

Mixed Multinomial Logit

Following Agresti (2007) presentation, generalized linear models (GLMs) extend ordinary regression
by allowing non-normal responses and a link function of the mean. The generalized linear mixedmodel,
denoted by GLMM, is a further extension that permits random effects as well as fixed effects in the linear
predictor. We begin with the most common case, in which is an intercept term in the model.

g(µi) =
∑

r

βirxir (23)

Where βi is issued from some multivariate distribution. Traditionally this distribution is assumed to be
a multivariate normal distribution (MNV) giving:

βi ∼ MNV (β,Σ) (24)

In more recent work of Agresti (2013) the more advanced models are described. The multinomial logit
and probability based discrete-choice models can be further generalized by treating certain effects as
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random rather than fixed.
A mixed logit model is the one in which choice probabilities are obtained by integrating the logistic
expression for choice probabilities with respect to a distribution for certain model parameters. This
allows heterogeneity among subjects in the size of effects. It is useful as a mechanism for inducing
positive association among repeated responses with panel data. Estimates of the parameters of the
mixing distribution provide information about the average effects and the extent of the heterogeneity.
Individual effects can also be predicted using this technique.

The Mixed Logit is a further development and generalisation of a traditional MNL and Conditional
Logit models, because both of these models may be constructed using Mixed Logit specification with
a correct parametrisation. The main difference from the more simple models is that in this case it is
assumed that effects vary across population and might even be correlated. The utility specification in
this case is constructed identically to simple models, but the deterministic part assumes that effects vary
across population:

Uij = Vij + ηij where Vij = αj + βjXi + γiZj (25)

Mathematically the random effects specification is achieved through the parameter vector γi, which is
unobserved for each i. The γ in this case is assumed to vary in the population following the continuous
density f(γi | θ), where θ are the parameters of this distribution. The simplest choice of the distribution
for the random effects is the normal distribution, which was used by Michaud, Llerena, and Joly (2012),
or more precisely a multivariate normal distribution, because authors took into account the correlation
between coefficients:

γi ∼ MVN(γ,Σ) (26)

In this case the vector of alternative specific effects can be represented as:

γi = γ + Lσi (27)

Where σi ∼ N(0, I) , and L is the lower-triangular Cholesky factor of Σ knowing which, the actual
variance-covariance matrix for random effects can be derived, as presented in Croissant (2020):

LLT = V (γi) = Σ (28)

Here we do not present the eventual possibility to incorporate the individual specific characteristics
covariates into the given framework, because we will not use it, but such possibility is definitely worth
mentioning.

Where β are some fixed mean effects across population and ψ stand for the random part with 0 mean
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and some imposed variance-covariance structure, as it is technically possible to assume that only some
of the effects are random.

Amore advanced description of MMNLmodels is available in the work of McFadden and Train (2000),
where some intuitions are given on the estimation techniques necessary to evaluate such complexmodel.
The authors suggest, that numerical integration or approximation by simulation is needed to evaluate
MMNL probabilities. Maximum Simulated Likelihood (MSLE) or Method of Simulated Moments
(MSM) could be used to estimate the MMNL model in practice, both of which are described in the
reference work (McFadden and Train 2000)

1.4.2.2 Neural Networks

The second group of models focuses on more advanced and atypical modelling techniques rarely im-
plemented by the economists in their studies, as usually this family is perceived as not offering enough
insight when it comes to the effects estimation. TheML techniques are usually viewed by economists as
some black boxes, which do not provide any information about the underlying process. It is quite easy
to comply with their position, as even though the most advanced techniques perform better in terms of
predictive power, they rarely offer any insight into the modelling process.

For this particular part we use the model’s specifications described in the handbook of Hastie, Tib-
shirani, and Friedman (2009) with some additions and modifications, which aim at integration of this
particular specification in conformity with the specifications of the econometric discrete model nota-
tion. Neural Networks (NN) represent an advanced class of models, being a further complexification of
the generalised additive models (GAM), which are a generalisation of the generalised linear models
(GLM), which was defined in previous subsection. This GLM is generalised through assumption that
each explicative variable inX can undergo some transformation, linear or not, resulting in a following
GAM model:

g(µi) =
∑

r

sr(xir) (29)

Where sr(.) is an unspecified smooth function of predictor xir. In order to obtain a NN model, this
structure is further developed as follows to obtain firstly a projection pursuit regression (PPR):

f(X) =
M∑

r=m

gm(ωT
mX) (30)

The X in this notation is a vector of inputs with p components, and ωm with m ∈ {1, 2, . . . ,M}
are unit p-vectors of unknown parameters. Before proceeding, we will introduce some novelties to the
notation used till this point by introducing vectorsX1,X2, . . .,XS, whereX1 is the output of the first
layer of neural network, each element of which is some transformation (usually linear in parameters with
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some “activation” function) of the input vector X . Then the simplest NN for Ω alternatives (classes)
classification, with two layers, may be represented as:

fj(X) = gj(X2) withX2j = ψ0j + ψT
k X1 (31)

Where fj models the probability of a class j, or in more comprehensive language the probability that a
given individual will choose an alternative ωj from his choice set Ωi:

X1m = σ(φ0m + φT
mX) (32)

While σ(.) is an activation function and gk(.) a probability transformation function, traditionally a
softmax function. The latter is being used as well in multinomial logit (MNL) models:

gj(T ) = eTj∑Ω
l=1 e

Tl
where j, l ∈ Ω (33)

This means, that single level NN with a softmax activation layer should be identical to simple MNL
model with all the coefficients varying by alternatives. Zm can be viewed as a basis expansion of the
original inputs X and the neural network is then a standard linear multinomial logit (MNL) model,
using the transformations as inputs.

One of the supposed major problems for NN models in discrete choice context is the inability to take
into account all the influencing factors across all the alternatives. Moreover, in this case study there is
major drawback in the ambiguity among choices A and B, as they are interchangeable.

As we desire to obtain the effects assuming the alternatives A and B are identical, this means that we
should impose some additional restrictions over the model. Traditional Multinomial Logistic regression
(MNL) can be potentially transcribed into a NN using convolution techniques. The convolution layer
operates iteratively on a given subset from the input vector, calculating one single output per k inputs.
In this case k is denoted kernel size. Another parameter, which defines a convolutional layer is the
stride (s), which determines how the “window” determined by kernel size should be moved over the
input layer. Consequently, the output layer consists ofm values determined as:

m = n− k

s
+ 1 (34)

Where n is the length of the input vector to this layer. Wemay attempt to define a convolution layer with
linear activation function as follows, assumingX = X1, . . . , Xn is the input vector andX11, . . . , X1m

is the output vector, while φ = φ1, . . . , φk is the vector of weights:
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X11 =φ1X1 + φ2X2 + · · · + φkXk

... (35)

X1m =φ1Xn−k + · · · + φkXn

The designed this way CNN consists of two transformation layers. The first one is 1D convolutional
layer with linear activation function, which takes as input the dataset in “wide” format with 27 variables
overall (9 variables for each alternative), which produces a single value as an output value for each
individual for each choice set, resulting in 3 output values in total. The second layer is a restricted
softmax transformation layer, which directly applies softmax transformation over the inputs, without
any supplementary permutations.

The vector of inputs issued from the dataset transformed into the “wide” format can be represented as:

Xi = Buyi,A, Sexi,A, Agei,A, . . . , Habiti,C , P ricei,C , Labeli,C , Carboni,C , LCi,C (36)

Where all values with C index are set to zero in order to set the baseline alternative. The first convolu-
tional layer can be written as:

Vj = αBuyBuyij + βSexSexij + βAgeAgeij + βIncomeIncomeij + βHabitHabitij+
+ γP ricePriceij + γLabelLabelij + γCarbonCarbonij + γLabel×CarbonLabel × Carbonij (37)

Where j ∈ {A,B,C}, with C denoting the “No buy” option.

We configure the convolution layer with linear activation function to move across the input vector with
strides 9, producing this way a vector of length 3 as an output. This outputs of this layer may be
interpreted as utilities for each alternative respectively, identically to MNL regression. The resulting
design for a single convolution fold can be schematically represented as in figure 4.

The second transformation layer is a dense layer with a “softmax” activation function as described
above, which has 3 coefficients for each output, because it aggregates the inputs to an identical number
of outputs rescaling them in the process and producing choice probabilities. Taking a set of VA, VB, VC

for inputs and producing a vector of probabilities P (A), P (B), P (C) as outputs. The second level may
be synthetized as presented in figure 5.

Finally, given the combination of these two layer we may construct the whole CNNmodel. We may use
the following graphical representation, shown on figure 6 to visualise the resulting CNN architecture:
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Figure 4: Convolution layer
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Figure 6: Convolution Neural Network design
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The figure 6 is no more than a simplified architecture presentation for the chosen CNN design, imitating
the MNL model in this particular case. Each alternative input on this graph assumes entry of the three
attributes of a particular alternative, supported by five individual characteristics each, the later being
specific to a particular alternative exactly as in the MNL model specification.

In this case the only difference between these two models is represented by the algorithm used for es-
timation, which can yield absolutely different results or even require some transformation of the input
dataset (ie. rescaling, which is used to prevent biases in weights estimation). Consequently, the main
interest of such implementation is to observe, whether or not a ML algorithm will be able to bypass
the MNL model performances in the presence of heterogenous individual preferences. Different con-
vergence rates and different iterative algorithms may result in absolutely distinct optimums for the pa-
rameters vector. The particular algorithms implemented will be discussed later, alongside the obtained
results.

For NN modelling we use the advanced interface offered by Google’s Tensorflow (Allaire and Tang
2020) with Keras (Allaire and Chollet 2020) back-end for R-language. The flexibility offered by this
particular tool is astonishing compared to other neural networks implementations in proposed in R. This
flexibility allows us to simulate exactly the architecture of a MNL model and compare this way how the
different estimation techniques and algorithms perform in the identical contexts.
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1.5 Model performance evaluation and available measures

In this subsection we are going to describe the different performance measures, attempting at the same
time to shun some light on the complexity of this particular task and the multitude of different questions
that are usually aborded when a problem of performance measures’ choice arises.

The main problem in the case of classification context and particularly in the multiple choice classifica-
tion context relates to the fact that rarely all of the models can use the same metrics for their comparison
(Baldi et al. 2000). The available metrics largely depend on the output variable type, the models archi-
tecture and assumptions, the specifications, the algorithms used and, finally and most importantly, the
context. As we have seen earlier, the work of Michaud, Llerena, and Joly (2012) was focused on the
identification of the willingness to pay of consumers for particular environmental attributes of roses,
rather than general goodness of fit of particular model, which perfectly illustrates the complexity of the
posed question.

There exists a multitude of different target metrics to evaluate and compare the performances of dif-
ferent models. For example, one may be interested in exploration of a particular effects or the overall
goodness of fit, some predictive qualities or a possibility to derive correct estimates for a particular
socio-economic information. This topic was already largely explored by some of the statisticians (Jap-
kowicz and Shah 2011) with some initial steps into producing an integrated support containing all the
necessary information for applied studies. However, even given the amount of the work in reference,
there is still a strong need for contextualisation and constitution of application specific methodological
supports. The different possible application scenarios require sometimes absolutely different metrics.
For example, econometricians rarely take into account the computational efficiency of the models, while
ML researchers are rarely considering the possibility to derive the specific field specific metrics.

Nevertheless, this work aims at demonstrating the full potential of the proposed experimental framework
and we are bound to demonstrate at least a fraction of its full potential, which inevitably addresses
the different performance metrics used to compare the models’ performance in terms of precision and
predictive accuracy.

The measures available may roughly be divided into three parts following the logic of Japkowicz and
Shah (2011) (for an adaptation of the vision of Japkowicz and Shah (2011) on the different measures’
types see Appendix B).

• The measures that take information solely from the confusion matrix, which can be calculated
using the estimated model over a know dataset (also denoted a test dataset). These measures are
typically applied in the case of deterministic classification algorithms, but can be calculated for
the probabilistic output algorithms as well.

• The measures that not only use the confusion matrix, but integrate the information about the class
distribution priors and classifier uncertainty. Logically, these metrics are useful for the scoring
classifiers” performance evaluation and could not be used with some more simple models.

35



• Bayesianmeasures to account for probabilistic classifiers andmeasures for regression algorithms.
Bayesian measures require a probabilistic structure of the models output.

The measures may be as well separated into two different groups by their behaviour (Japkowicz and
Shah 2011):

• A monotonic performance measures pm(.), for which a strict increase (or decrease) in the value
of pm(.) indicates a better (or worse) classifier throughout the range of the function pm(.) re-
spectively.

• Not strictly monotonic can be thought of as the class-conditional probability estimate discussed
in Kukar and Kononenko (2002) in the context of a multi-class problem.

As our framework can potentially treat multiple different aspects, we will not only assess the general
models’ performances, but explore the capacity to identify and estimate the target values of interest.
Taking into account the context of the target article we will be mostly interested in exploring the will-
ingness to pay (WTP) or the premium, that the consumer is ready to add to the observed price for a
particular attribute.

1.5.1 Confusion matrix

Most of the performance measures for a classification task are derived from the observed entries in the
confusion matrix, denoted C (Japkowicz and Shah 2011, @baldi2000ar). This matrix lies in the center
of most non-probabilistic performance measures for classification. A confusion matrixC for a classifier
defined by a function f(.) over some dataset may be defined as:

C = cij, i, j ∈ {1, 2, . . . , k} (38)

Where i is the row index and j is the column index, both referring to some available alternatives for a
given alternatives’ set Ω.

Generally, C is defined with respect to some fixed learning algorithm. The confusion matrix can be ex-
tended to incorporate information for the performance of more than one algorithm, resulting in creation
of a confusion tensor, which can be imagined as a stack of matrices. There exist specific metrics to be
implemented on such tensor.

Given a training dataset and a test dataset, an algorithm learns on the training set, outputting a fixed
classifier f . These datasets may be identical, as it is frequently done in economics studies. The test-set
performance of f is then recorded in the confusion matrix. This means that a confusion matrix, as well
as its entries and the measures derived from these are defined with respect to a fixed classifier f over a
given dataset. Consecutively, the matrix is sometimes denoted with respect to f as C(f). It is a square
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k × k matrix for a dataset with k classes. Each element cij(f) of the confusion matrix denotes the
number of examples that actually have a class i label and that the classifier f assigns to class j.

In binary case these measures are simplified to four, that do not always appear in matrix form for the
sake of simplification. These measures, as well as derived performance indicators are described in Baldi
et al. (2000). The binary classification case is the most common setting in which the performance of
the learning algorithm is measured. Also, this setting serves well for illustration purposes with regard
to the strengths and limitations of the performance measures.

1.5.2 General performance measures

The general measures (Baldi et al. 2000) describe the performance of a given classifier f(.) (or shortly
f ) over a given set of observation, taking into account all the possible classes, or choices in the dis-
crete choice context. In other words, these measures incorporate all the information available for all
the classes matches or mismatches, which offers some good general overview of a given model perfor-
mances, but sometimes ignores some of the significant elements. For example, given an unbalanced
dataset, where one class dominates the other, the general performance measures can have high positive
values, signalling the good overall performance, while all the observations will be assigned to dominant
class by the classifier.

The most known measures, which are usually implemented to assess the general performance of the
algorithms or even construct “loss” functions for some learning tasks include: the empirical risk, the
empirical error rate and the accuracy.

Accuracy and error rate effectively summarize the overall performance, taking into account all data
classes. This is the reason why these measures are often implemented to assess general algorithms’
performances and are used in the learning tasks. Moreover, they offer an insight into the generaliza-
tion performance of the classifier by means of studying their convergence behaviours, which may be
important for some algorithms.

Nevertheless, such general metrics have potential limitations (Japkowicz and Shah 2011). Firstly, these
measures suffer from the lack of information on the varying degree of importance of different classes
on the performance. What is more, as we have already pointed out, the metrics are incapacitated by
the lack to produce any meaningful information in the case of skewed class distribution. This results
in the situation, when as the distribution begins to skew in the direction of a particular class, the more-
prevalent class dominates the measurement information in these metrics, making them biased.

Empirical risk

The empirical risk RN(f) of classifier f on test set N , defined as:

RN(f) = 1
| N |

|N |∑
i=1

I(yi 6= f(xi)) (39)
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Where:

• I(a) is the indicator function if predicate a is true and zero otherwise;
• f(xi) is the label assigned to example xi by classifier f ;
• yi is the true label of example xi, which indicates to ome of the alternatives {ω1, . . . , ωk} ∈ Ω;
• | N | is the size of the test set.

This measure describes the average loss over the data points.

Empirical error rate

The empirical error rate can be computed as follows:

RN(f) =
∑

i,j:i 6=j cij(f)∑Ω
i,j=1 cij(f)

=
∑Ω

i,j=1 cij(f) − ∑Ω
i=1 cii(f)∑Ω

i,j=1 cij(f)
(40)

This rate measures the part of the instances from the given set that are incorrectly classified by the
learning algorithm f .

Accuracy

The accuracy describes the part of correctly classified instances in a given set and is by its nature a
complement to the empirical error-rate measure. It can be computed as:

AccN(f) = 1
| N |

|N |∑
i=1

I(f(xi) = yi) (41)

Where yi is the observed class for observation i. Given a skew ratio rs, it is possible to extend this
measure and define the skew-sensitive formulation of the accuracy. Suchmodification allows partially
to solve the poor measures’ utility problem on a skewed class distribution dataset.

1.5.3 Single-class performance measures

Apart from the general performance measures, there exist some more specific performance measures,
which instead of estimating the performances of the overall classifier, target some specific aspects.
Usually in the modelling the consumer behaviour we may be interested in his his choice “Buy” against
“No buy” beforehand, and only afterwards we are interested by his consumer habits and preferences.
Among these measure we may cite:

• True- and False-Positive/Negative Rates

• Sensitivity

• Specificity

• Precision
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• Recall

• Geometric means

• Likelihood Ratio (LR) 2

• F-measured

• Skew and Cost

One of the important problems for discrete choice modelling and general classification tasks resides in
the form of the greater importance of the algorithms’ performance on a single class of interest. This
performance on a given class can be crucial with regard to the instances of this class itself or with regard
to the instances of other classes in the training data. As it was mentioned earlier, in our particular study
case, we may be interested at how good the algorithm distinguishes the “Buy” and “No buy” choices.

A number of such measures can also allow us to measure the overall performance of the classifier with
an emphasis on the instances of each individual class. Such precise metrics may be excessive, given
a particular case study, although they offer a good substitute for more typical measures, such as the
accuracy or error rate.

In this part we are going to introduce some new terminology, because contrary to the precious parts,
where we had to deal with classes, here we are bound to simplify the problem to a binary case. This
means that one of the classes is considered as “positive”, while the rest of the alternatives is regrouped
into a single “negative” class. Such transformation allows us to define new variables, which will be
used later in the class-specific measures presentation. Among these values we have:

• True Positive or TP , which denotes the number of correctly classified observations which ap-
pertained to the “positive” class;

• TrueNegative orTN , where the number of correctly classified “negative” instances is regrouped;
• False Positive or FP stands for the misclassified instances that in the dataset were encoded as

“positive” class;
• False Negative or FN , which logically indicates the number of initially “positive” observations,

which were identified as “negative” ones by the model.

All these values may be easily obtained from the confusion matrix C.

True- and False- positive/negative rates, specificity and sensitivity

The most natural metric aimed at measuring the performance of a learning algorithm on instances of a
single class is arguably its true-positive rate. The true-positive rate of a classifier is also referred to
as the sensitivity of the classifier. The complement metric to this, in the case of the two-class scenario,
would focus on the proportion of negative instances is called the specificity of the learning algorithm.
It is obtained as:

2This measure will be omitted in order to prevent the eventual confusion with Likelihood Ratio (LR) used in the MNL
and MMNL models
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TPRi(f) = cii(f)∑I
j=1 cij(f)

= cii(f)
ci(f) (42)

The false-positive rate of a classifier:

FPRi(f) =
∑

j:j 6=i cji(f)∑
j,k:k 6=i cjk(f) (43)

Some usefull derived formulas, which are easy to compute for a binary case, are introduced hereafter.
The True- and False- positive rates:

TPR(f) = TP

TP + FN
= Sensitivity = 1 − FNR(f) (44)

FPR(f) = FP

FP + TN
(45)

As well as their counterpart, the True- and False- negative rates, which are focussed on the number of
correctly classified instances from a “negative class”.

TNR(f) = FN

TN + FP
= Specificity (46)

FNR(f) = FN

FN + TP
(47)

Precision and recall

The precision or positive predictive value (PPV) of a classifier f on a given class of interest j, denoted
as well as the “positive” class, in terms of the entries ofC, measures how precise the algorithm is when
identifying the examples of a given class and is defined as:

PPVi(f) = Preci(f) cii(f)∑I
j=1 cji(f)

= cii(f)
c.i(f) (48)

For binary case we can write the following simplified definition, which should be more clear to the
reader:

Prec(f) = PPV (f) = TP

TP + FP
(49)

The PPV can be complimented with the sensitivity of the classifier over this class. This measure is
generally referred to as recall:
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Rec(f) = TP

TP + FN
(50)

Geometric means

The geometric means take into account the relative balance of several performance measures for a
given classifier. The most popular option is to observe simultaneously the classifier’s performance on
both the positive and the negative classes:

Gmean1(f) =
√
TPR(f) × TNR(f) (51)

This implementation is of particular interest for our case study, as we will be able to compare the
performances of different models across “Buy” and “No buy” options. Another popular version of
the measure, which focusses on a single class of interest, can take the precision of the classifier in
combination with the classifiers performance on the “positive” class into account:

Gmean2(f) =
√
TPR(f) × Prec(f) (52)

F-measure

TheF-measure as well attempts to address the issue of convenience brought on by a single metric versus
a pair of metrics. It combines the information of precision and recall in a single value. More precisely,
the F-measure is a weighted harmonic mean of precision and recall, with a weight α:

Fα = (1 + α)(Prec(f) ×Rec(f))
αPrec(f) +Rec(f) (53)

For instance, the most comprehensive balanced F-measure weights the recall and precision of the
classifier evenly:

F1 = 2(Prec(f) ×Rec(f))
Prec(f) +Rec(f) (54)

In most practical cases, appropriate weights are generally not known, which results in some complica-
tions in choice of the hyper-parameter α of such combinations of measures.

Class ratio

Class ratio for a given class i, which in the consumer choice setting is usually denoted ωi refers to the
number of instances of class i as opposed to those of other classes in the dataset:

ratioi = ri =
∑

j cij∑
j,j 6=i cji + ∑

j,j 6=i cjj

(55)
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Or for a binary case:

ratiopositive = (TP + FN)
(FP + TN) (56)

Another issue worth considering when looking at misclassification is that of classifier uncertainty. This
lack of classifier uncertainty information is also reflected in all the performancemeasures that rely solely
on the confusion matrix.

1.5.4 Information-theoretic measures

These measures are probabilistic by their nature, as they explore the performances of the classifier with
respect to the (typically empirical) prior distributions of the data. in contrast to the cost-sensitivemetrics
that have been introduced earlier, the information-theoretic measures, because of accounting for the
data priors, are applicable only to probabilistic classifiers. What is more, these metrics are independent
of the cost considerations and can be applied directly to the probabilistic output of a given model. These
measures are extensively implemented in Bayesian learning and take their roots in physics. Among these
metrics one may encounter:

• Kullback–Leibler Divergence, which estimates the difference between the entropies of the two
distributions;

• Kononenko and Bratko’s Information Score, which explores the likelihood of correct classifica-
tion.

In this work we will present only the first among these two.

Kullback–Leibler Divergence

Let the true probability distribution over the labels be denoted as p(y). Let the posterior distribution
generated by the learning algorithm after seeing the data be denoted byP (y | f). Because f is obtained
after looking at the training samples x ∈ S, this empirically approximates P (y | x), the conditional
posterior distribution of the labels. Then the Kullback–Leibler divergence (KLD or KL) can be uti-
lized to quantify the difference between the estimated posterior distribution and the true underlying
distribution of the labels:

KLD[p(y) || P (y | f)] =
∫
p(y)lnp(y)dy −

∫
p(y)lnP (y | f)dy (57)

KLD[p(y) || P (y | f)] = −
∫
p(y)lnP (y | f)

p(y) dy (58)
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The KLD divergence basically just finds the difference between the entropies of the two distributions
P (y | f) and p(y). This measure is also known as relative entropy (see Baldi et al. (2000)) for more
information.

KLD[p(y) || P (y | f)] = −
∑
x∈S

p(y)lnP (y | f)
p(y) dy =

∑
x∈S

p(y)ln p(y)
P (y | f)dy (59)

The KLD value is equal to zero if and only if the posterior distribution is the same as the prior, when
the perfect fit is achieved, meaning that the classifier perfectly mimics the true underlying distribution
of the labels.

Even though the KLDmeasures the difference between the posterior distribution obtained by the learner
from the true distribution so there is a significant drawback to it. The KLD needs the knowledge of
the true underlying prior distribution of the labels, which is rarely, if at all, known in any practical
application. In practice the estimated priors are used, although in the experimental framework where a
synthetic dataset is used, wemay theoretically impose some “true” structure over the choice distribution.

1.5.5 Case specific metrics

The article ofMichaud, Llerena, and Joly (2012) focuses on theWTP for roses and derivation of the pre-
miums for particular alternative attributes of interest. This focus allows authors to explore the consumer
attitude towards the alternative specific environmental attributes. Consequently, as we try to follow the
logic introduced in the article, we are going to attempt to derive the WTP and premiums for attributes
as well. However, before introducing the notion of the WTP and premium, we should firstly describe
the procedure of derivation of the marginal effects, as the WTP and premiums are expressed using the
marginal effects.

In the conventionalMNLmodels the coefficients βrj can be interpreted as the marginal effect of variable
Xr on the log odds-ratio of alternative j to the baseline alternative. The marginal effect of Xr on the
probability of choosing a specific alternative j can be expressed as:

MErj = ∆P (Yi = ωj)
∆Xr

(60)

Consequently, for theMNLmodel, the marginal effect ofXr on alternative j not only takes into account
the parameters specific to j alternative, but the ones of all other alternatives as well. The equation can
be written in this case as:

∆P (Yi = ωj)
∆Xi

= P (Yi = ωj)[βj1 −
k∑

l=0
P (Yi = ωl)βj1] (61)
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The parameters such as WTP and premiums are more easy to interpret. They can be estimated directly
or can be obtained from the marginal utility by dividing it by the effect estimate of a price, taken as
a non random parameter. The resulting ratio can afterwards be interpreted as a monetary value. The
WTP as it was described in the context presentation, taking into account the case specific relative utility
functions can be represented as:

WTP =
∆V

∆BUY
∆V

∆P rice

= −αBuy

βP rice

(62)

The premiums for a given attribute Xr (Label, Carbon or their cross-product LC), can therefore be
expressed as:

WTP =
∆V
∆Xr

∆V
∆P rice

(63)

1.5.6 Selection of measures to implement

In this work we are going to explore only a selection of the described above most popular performance
metrics, that are the most interesting given the context of the study. Moreover, in our application we
are limited in the number of measures we can explore.

In the first place we are interested by the WTP for roses and the premiums associated with particular
alternative specific attributes. These theoretical values could be easily derived for all the three explored
models and they will allow us to compare, how close are the derived values from the theoretical input
values, which were defined on the dataset generation step.

Secondly, it is important to assess the overall goodness of fit over the whole dataset for the selected
models. For this particular task the most suited measure is the accuracy. This way we will be able to
observe the ratio of the overall correctly classified instances. We may implement the KLD estimator
for overall goodness of fit, based on the probability distributions, because all the models predict the
probabilities for the available alternatives.

We may be interested as well in comparing the performances of the given models in terms of distin-
guishing the “Buy” choice, irrelevant of the alternative, and the “No buy” choice. This is a particularly
interesting question, because in the different choice settings and over the datasets generated under differ-
ent theoretical assumptions. For this purpose the most interesting choice will be to select the F-measure
or a Geometric mean of the TPR and TNR.

Finally, we are going to observe the performance of these different models in terms of computational
efficiency in resources consumption. For this task we will observe the computation times for given
models3. The obtained results will be discussed at the end of this work.

3This measure is one of the most complex, because it accounts at the same time for different models, different estimation
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2 Model comparison in practice: an application

This section is designed to present the results of the designed theory-testing framework as well as to
offer some more detailed view on the adopted procedure. It will respect the following structure. First
of all we will start by a presentation of two generated datasets and their comparison with the original
dataset obtained through a controlled experiment by Michaud, Llerena, and Joly (2012). Then we will
discuss the technical implementation of the models to test and the resulting estimations over two of
the simulated datasets. Finally the target performance metrics will be constructed for all the models’
performances over both of the datasets andwewill compare the obtained estimates with the input values,
assessing this way the biases suffered during estimation.

2.1 Simulating individual choices

Based on the article of Michaud, Llerena, and Joly (2012) we generate a synthetic dataset assuming the
utility function is as described in the paper with some minor changes and adjustments. We have already
delimited the scope of study and delimited our area of interest to the exploration of different models per-
formance given the theoretical structure of consumer preferences for the alternative specific attributes.
For simplicity we relax some of the assumptions made in the paper in order to generate two different
datasets. For the first dataset we assume that estimations made in the paper and the derived utility func-
tions are correct and reflect the real world situation. For the second one, we relax some of the advanced
assumptions and regenerate a simplified version, which will allow us to contrast the performances of
different models in different choice context assuming different nature of choice functions.

In both situations the utility functions are determined as in paper: we use the exact means for the coeffi-
cients estimates, assuming they are correct. The relative utility’s deterministic part for each individual
is defined by the following function, which was presented in a more detailed way in previous section:

Vij = αi,Buy + βBuy,SexSexi + βBuy,AgeAgei + βBuy,SalarySalaryi + βBuy,HabitHabiti+
+ γP ricePriceij + γi,LabelLabelij + γi,CarbonCarbonij + γi,LCLCij (64)

Where LC = Label × Carbon. The random component of the relative utility Uij is defined as
identically and independently distributed random variable εij issued from the Gumble distribution
parametrised with (0, 1). The mean effects for the components of the deterministic part are given as
presented in the table 4a

The only difference between the two generated datasets is in the specification of the randomness of

algorithms, different numerical implementation in the statistical software and different PC configuration. It is valid in this
particular case, because all models were estimated using the same hardware and software set-up.
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Table 4: The assumed relative utility function parameters

(a) Mean effects

Effects
Means

Individual characteristics (β)
Sex 1.420
Age 0.009
Salary 0.057
Habit 1.027

Alternatives’ attributes (γ)
Price −1.631
Buy 2.285
Label 2.824
Carbon 6.665
LC −2.785

(b) Variance-covariance structure

Effects
Fixed Random

Variance
Buy 0 3.202
Label 0 2.654
Carbon 0 3.535
LC 0 2.711

Covariance
Buy:Label 0 -0.54
Buy:Carbon 0 -4.39
Buy:LC 0 6.17
Label:Carbon 0 8.77
Label:LC 0 -2.33
Carbon:LC 0 -4.82

these coefficients as they may vary or not across population. It means, that the first dataset is generated
assuming the variance-covariance matrix for correlated random coefficients is composed with 0’s only
and the resulting multivariate normal distribution produces exact means for the coefficients. The second
dataset is generated using the exact estimates of the variance-covariancematrix as provided in the article.
The assumed parameters for effects distributions are represented in the table 4b.

Additionally we impose some supplementary constraints to our data due to the limitations of the sim-
ulation tool. Particularly, the individual characteristics are supposed to be not correlated, which can
be explained by the fact that the context of a controlled experiment offers a possibility to control this
particular feature. Obviously, this is not optimal decision, as naturally the age, sex, income and environ-
mental habits of individuals should be correlated. Unfortunately, the original article does not provide
information about the characteristics’ variance-covariance matrix.

The targeted features and requirements to the resulting dataset are numerous and they make a contrast
compared to the initial empirical dataset.

The simulated dataset allows us to explore significant number of choice sets for numerous artificial
individuals, which ensures statistical validity for obtained results and permits us to use advanced esti-
mation algorithms (such as neural networks, for example). It means that we generate a large sample with
exhaustive number of choice sets, in which all the possible combinations of alternative attributes are
represented. Here by attributeswe understand the binary factors describing rose’s labelling and carbon
footprint and ignore the price, the latter being added afterwards using randomisation techniques. This
choice is similar to the experimental design described in the Michaud, Llerena, and Joly (2012) work
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and is easily explained when we take a closer look at the number of choice sets for different specifica-
tions. In simulated datasets it is traditional to use Full-Factorial (FF) experimental design as it uncovers
completely the full potential of simulation tools: it allows to observe all the possible combinations of
factors affecting some process and fully explore their implications. In our case, a simple full factorial
design for a binary choice context has 28 combinations of factors (seven levels of prices, two levels
for eco-label and two levels for Carbon imprint), but a complete full factorial design for a choice con-
text with two alternatives implies 784 different combinations (as we have two alternatives each having
28 possible variants), which is unrealistic in a standard experimental study context and risks to be too
demanding in terms of calculation times.

The dataset should be equilibrated with relatively identical number of choices for all three alternatives.
In the field experiment the authors managed to achieve satisfying result with 67.5% of “Buy” choices
and 32.5% for “Not to buy” choices, although the “A” and “B” alternatives showed different properties.
The resulting observed descriptive statistics derived from the data proposed by Michaud, Llerena, and
Joly (2012) are presented in table 5. The table focusses on the choice “Buy” descriptive statistics,
ignoring the “No buy” option, for which all the attributes are considered to be equal to 0. The p-values
are the results of the two subsets (“A” and “B”) comparison4.

Table 5: Alternatives’ descriptive statistics by group, correlated random effects

A B Total p value
(N=1186) (N=1186) (N=2372)

Choice < 0.001
Mean (SD) 0.517 (0.500) 0.159 (0.366) 0.338 (0.473)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Price 0.418
Mean (SD) 2.990 (0.881) 3.020 (0.893) 3.005 (0.887)
Range 1.500 - 4.500 1.500 - 4.500 1.500 - 4.500

Carbon < 0.001
Mean (SD) 0.167 (0.373) 0.832 (0.374) 0.500 (0.500)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Label 0.837
Mean (SD) 0.502 (0.500) 0.497 (0.500) 0.500 (0.500)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Of particular interest in the table 5 to us is the unbalanced structure of the resulting dataset. TheCarbon
imprint of the different alternatives has not identical properties, which leads to different Choice statis-
tics, where the alternative with higher carbon imprint is chosen less frequently. In the original study
such difference was not dangerous, because only the “Buy” option was compared against “No Buy”
one. However, in case of the NN modelling such unbalanced dataset may lead to erroneous results,

4χ2 test is used for discrete variables, while Anova is implemented for continuous ones.
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where the more popular alternative will always have a higher choice probability. The distribution inside
the “Buy” group for different alternatives (“A” and “B”) should be quasi-identical, producing equally
distributed three groups of choices each nearing 33.3%. Even if this property is not as important for a
traditional MNL model, we are interested to observe the same choice structure in our artificial dataset,
because it may highly affect the performance of more advanced models, such as NN for example.

2.1.1 Generated dataset presentation

In this section we will discuss the resulting datasets simulated under the listed above assumptions.

For our dataset we choose to generate 160000 observations, for 1000 individuals, each facing 16 dif-
ferent choice sets 10 times. The 16 choice sets include all the possible combinations of two roses (“A”
and “B”) described by two environmental attributes, while prices are randomly assigned within the
choice sets. The prices are assumed to be uniformly distributed over the choice sets, following a dis-
crete uniform distribution. The prices vary among the different replications. This procedure resulted
in sufficiently large dataset, which in the same time was not difficult to treat without implementation of
Big Data specific techniques.

The original experimental design used to generate the choice sets assumed no branding for the alterna-
tives to avoid any undesired bias in the results. Theoretically this design should have provided an equi-
librated dataset with no correlation between different attributes, although the size of the final dataset
might have affected the results. In our case we assume that individuals have no additional information
about the roses in choice sets except the three observed attributes. As in the original work we assign
insignificant labels “A” and “B” to the roses within choice sets, which is done mostly for convenience
and has no impact on the individuals’ decisions.

It is interesting to explore the statistical properties of the resulting datasets: the original one (Original),
gathered byMichaud, Llerena, and Joly (2012) andmade available in anonymised format by Iragaël Joly;
and the two generated artificial datasets, assuming homogeneous (Generated FE) and heterogeneous
(Generated RE) preferences respectively of the individuals for the environmental attributes. First of all,
we may observe the individuals descriptive statistics for three datasets in the table 6.

Even though the p-values show no evident differences between the simulated datasets and the original
one, except for the Age variable, we observe the differences in the means. This is explained by the
implemented dataset generation procedure. The variables in the original dataset are integers, assuming
continuous nature of the real world variables. When synthesizing the dataset, we assume the quasi
continuous variables, such as Age and Salary (denoted as Income in original work) to be issued
from normal distribution with parameters as figuring in the descriptive statistics for the original dataset,
and only afterwards we convert the resulting values to integers. The binary variables Sex and Habit
are generated with random draws from Bernoully distribution and consequently produce more realistic
results. This procedure leads to potential biases in the resulting datasets, which is true not only for the
individual variables, but for the alternatives’ attributes as well.
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Table 6: Individuals’ characteristics descriptive statistics by dataset

Fixed Effects Random Effects Target p value
(N=1000) (N=1000) (N=102)

Sex 0.851
Mean (SD) 0.506 (0.500) 0.515 (0.500) 0.490 (0.502)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Habit 0.182
N-Miss 0 0 1
Mean (SD) 0.683 (0.466) 0.657 (0.475) 0.604 (0.492)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Salary < 0.001
Mean (SD) 2.750 (1.476) 2.671 (1.438) 2.147 (1.222)
Range 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000

Age 0.255
Mean (SD) 41.862 (13.685) 42.161 (13.820) 39.755 (18.895)
Range 18.000 - 84.000 18.000 - 84.000 18.000 - 85.000

Table 7: Alternatives’ descriptive statistics by dataset

Fixed Effects Random Effects Target p value
(N=320000) (N=320000) (N=2372)

Price 0.002
Mean (SD) 2.936 (0.958) 2.936 (0.958) 3.005 (0.887)
Range 1.500 - 4.500 1.500 - 4.500 1.500 - 4.500

Carbon 0.999
Mean (SD) 0.500 (0.500) 0.500 (0.500) 0.500 (0.500)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Label 0.999
Mean (SD) 0.500 (0.500) 0.500 (0.500) 0.500 (0.500)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000
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Secondly, we may as well observe the alternative specific descriptive statistics. They are presented in
table 7. In this table we present the cumulative statistics for the “Buy” option, including both rose
“A” and rose “B” properties, while 160000 entries (1186 entries for the original dataset) describing
the “No buy” alternative are omitted, because their attributes are reduced to zeros in order to achieve
identifiability of the models (a complete presentation of descriptive statistics par dataset and stratified
by alternative may be found in Appendix C). The distributions of Carbon footprint and Eco-Label
attributes follows perfectly the ones inside the original dataset, although the prices differ. This partic-
ular divergence, may be explained by the procedure implemented to assign prices to the alternatives
inside choice sets, because the random generator algorithms different across statistical programs and
potentially the procedures implemented in R and SAS are not identical.

What is more interesting, is the difference in the Choice statistics. We may be interested in comparing
the statistics for different classes in our sample to ensure that they are not biased in favour of label “A”
or label “B”, as in this case it risks to bias the estimates. For the artificial dataset the ratio of choices per
“Buy” alternative is higher than 40% and reaches 47.3% for the fixed effect utility (table 8), while for the
random effects specification the numbers are lower, reaching only 42% in mean for two classes (table
9). This particular observation is rather interesting as it demonstrates how the heterogeneous effects for
alternatives’ features the consumer decisions.

We will start with a close examination of the fixed effects dataset, where we can see, that prices are not
equally distributed among the different choices.

Table 8: Alternatives’ descriptive statistics by group, fixed coefficients

A B Total p value
(N=160000) (N=160000) (N=320000)

Choice < 0.001
Mean (SD) 0.427 (0.495) 0.518 (0.500) 0.473 (0.499)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Price < 0.001
Mean (SD) 3.069 (0.979) 2.803 (0.917) 2.936 (0.958)
Range 1.500 - 4.500 1.500 - 4.500 1.500 - 4.500

The unbalanced prices potentially bias our dataset and we can see how the option with inferior mean
prices is chosen less frequently. Even thought this differences do not affect the MNL and MMNL mod-
els, which calculate average effects for all the alternatives, there may be an impact over the performances
of the NN models performances.

For the dataset with correlated random effects of the alternative specific variables, we observe an iden-
tical situation in table 9. The class with lower average prices is chosen more rarely by the consumers,
while the overall choices are less frequent due to the presence of stochastic individual preferences for
particular alternatives’ attributes.
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Table 9: Alternatives’ descriptive statistics by group, correlated random effects

A B Total p value
(N=160000) (N=160000) (N=320000)

Choice < 0.001
Mean (SD) 0.382 (0.486) 0.462 (0.499) 0.422 (0.494)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Price < 0.001
Mean (SD) 3.069 (0.979) 2.803 (0.917) 2.936 (0.958)
Range 1.500 - 4.500 1.500 - 4.500 1.500 - 4.500

We may conclude the preliminary datasets study and comparison with the main impression that two
artificial datasets may be assumed to be quasi-identical. The slight differences in prices, captured by
statistical tests may be considered insignificant in comparison with the biases present in the original
dataset. What ismore, even if the biasesweremore significant, themodels’ specification, which assumes
no variable specific coefficients for choice A and B would have lead to the correct estimates, exactly
as it was done by Michaud, Llerena, and Joly (2012). The heterogeneous preferences result in less
probable decisions to buy a rose in the population, which should definitely impact the performances of
our models. Now it rests to verify how well the number of selected models will be able to derive the
target values for the relative utility function.

2.2 Modelling consumer choices under different assumptions

This part of the work aims at presenting the results of the estimation for our selection of the econometric
and ML models. We should particularly underline the fact, that this section does not focus on the
performances of the models as they will be discussed more in detail latter. There is still a double
objective for this section, as before presentation of the obtained results, we should discuss the methods
and techniques, which were implemented in order to estimate the models, presented earlier.

The estimation procedure and choice of the estimation algorithms as well as their numeric implemen-
tation in the statistical software are important in the context of model performance comparison. The
different estimation procedures may lead to different results and different conclusions.

We consecutively estimate the chosen models over the two datasets: with and without the presence
of heterogeneous preferences of the individuals for the environmental attributes. Then we compare
the estimates with the target values we have used previously as inputs in defining the relative utility
functions.
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2.2.1 Estimation procedures

In this section we will discuss the different techniques implemented in order to estimate the different
models, which were described in the first theoretical part of this work. The different algorithms may
result in discrepancy in seminally identical mathematical models. This particular difference will be
demonstrated in comparison of theMNL results and the estimates obtained through estimation of a CNN
model imitating MNLmodel. What is more, different models can provide different insights into the real
world state. For example, MMNL model should account for heterogeneity in consumer preferences in
the presence of random alternative specific effects.

The econometric models focused on inference and understanding of the underlying effects are usually
estimated over the full dataset as there is no question about the precision of the obtained results, but
rather the statistical power achieved in idenfication of the effects. We will follow the same approach
in order not to face the different question related to external validity and verification of the estimated
model, as well as the questions related to verification and testing of the models’ performances over some
external dataset.

In this part of the work we will firstly present the different estimation techniques, starting with max-
imum likelihood (Cosslett 1981) estimator for the MNL, as well as it’s algorithmic implementation
within R, and the Adam algorithm (Kingma and Ba 2014) traditionally used to estimate the NN mod-
els. Afterwards, we will discuss the results of the estimations we obtain over the generated datasets,
presented in the previous part.

2.2.1.1 Maximum-Likelihood for MNL and MMNL

TheMNL andMMNLmodels, both are estimated by themaximum likelihoodmethod. In this technique
the estimator is used to derive the parameters, which were themost likely to produce the observed results
(observed dataset).

Assuming we face probabilities defined by some function f(.) parametrized θ, the joint probability
density may be defined as:

L(θ) =
Ω∏
j

Pi(j | θ) with θ : maxθL(θ) (65)

This function is also known as likelihood function. The log-likelihood is obtained through a log trans-
formation of the likelihood function:

L(θ) =
Ω∑
j

log(Pi(j | θ)) with θ : minθL(θ) (66)

As we can see the obtained function is then minimised by adjusting θ in order to obtain the optimal
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parameters. The optimisation problem is non-linear and requires an implementation of some iterative
technique to be solved. Under “general conditions” they are consistent, asymptotically efficient and
asymptotically normally distributed (McFadden 2001).

Speaking about the algorithmic implementation within the statistical software, the optimization is per-
formed by iteratively updating the vector of parameters by the amount given by step × direction. The
step in this case is a positive scalar and the direction is given by:

D = H−1 × g (67)

Where g represents the gradient, whileH−1 is an estimate of the inverse of the Hessian matrix.

In this procedure the main question is the choice and estimation procedure of H−1, which has several
possible definitions. For example, Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Broyden 1970) al-
gorithm may be implemented, which is an iterative method for solving unconstrained non-linear op-
timization problems. This algorithm updates H−1 at each iteration using the variations of the vector
of parameters and the gradient. The initial value of the matrix in this particular case is the inverse of
the outer-product of the gradient. The initial step equals to 1 and, if the new value of the function is
inferior to the previous value, it is divided by two, until a higher value is obtained. This iterative pro-
cedure stops when the gradient is sufficiently close to 0, which is achieved through comparison of the
g × H−1 × g product with the tolerance argument. An alternative stopping condition is achieved by
introduction of the maximum number of iterations for the algorithm, which ensures the impossibility to
fall into an eternal loop. We may summarise this algorithm as follows, as described in mlogit package
documentation by Croissant (2020):

1. The likelihood for the baseline model is calculated (assuming all the parameters are 0);
2. The function is then evaluated, assuming a step equals to one;
3. If the value of likelihood function is lower than the baseline value, the step is divided by two until

the likelihood increases;
4. The gradient g is then computed;

The authors of mlogit package insist that this method is more efficient than other functions available in
R at this time. The codes used to estimate MNL model are available in Appendix (Appendix D.1).

For the MMNL model there exists an interesting modification for the algorithm, because we need to
estimate the random effects variances and covariances in case of correlated random effects. The param-
eters are not directly introduced inside the likelihood function, but rather the elements of the Choleski
decomposition of the covariance matrix are used. The Choleski decomposition matrix L is defined in
this case as follows:
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L =


chol11 0 0 0
chol12 chol22 0 0
chol13 chol23 chol33 0
chol14 chol24 chol34 chol44

 (68)

Where indices correspond to the random effects variables, for example, in our case study we have four
parameters: Buy dummy variable, eco-Label, Carbon footprint and the LC , which stands for the
Label and Carbon cross-product. Once the estimates of the matrix elements are obtained a variance-
covariance matrix can be obtained:

LLT =


σ2

1 σ21 σ31 σ41

σ12 σ2
2 σ32 σ42

σ13 σ23 σ2
3 σ43

σ14 σ24 σ34 σ2
4

 = Σ (69)

Where σ2
i stands for the variance of effect i and σij represents the covariance between two random

parameters i and j. The codes used to estimate MMNL model may be found in Appendix (Appendix
D.2).

2.2.1.2 Backpropagation algorithm for NN

For the estimation of the NNmodel we benefit from the flexibility offered byKeras (Allaire and Chollet
2020), which is a high-level NN API developed with a focus on the speed of computation, offering at
the same time an astonishing level of control over the models. The port of Keras inside R offered by
Allaire and Chollet (2020) allows us to correctly specify our model, devised to imitate the structure
of the traditional MNL. This particular ML library offers a choice of different model estimation algo-
rithms, ranging from the state-of-the-art to the most recent and advanced techniques. In this particular
application it was decided to implement the Adam algorithm (Kingma and Ba 2014), which can be con-
sidered as rather outdated estimation method by the standards of ML field, because it was introduced
only in 2014.

Adam is an algorithm for first-order gradient-based optimization of stochastic objective functions, based
on adaptive estimates of lower-order moments. This method was proved to be computationally efficient,
as well as to have low memory requirements. It is invariant to diagonal rescaling of the gradients, and is
well suited for problems that are large in terms of data or parameters. This algorithm is also considered
appropriate for non-stationary objectives, as well as the problems with very sparse gradients. What
is more, one of the particular advantage for us is that the hyper-parameters do not typically require
advanced tuning.

Historically, the Adam algorithm is an extension to the stochastic gradient descent or SGD (Kiefer,
Wolfowitz, and others 1952) method. The latter is an iterative method for optimizing a differentiable or
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sub-differentiable objective functions. It can be considered as a stochastic approximation of the gradient
descent (GD) optimization, because it replaces the actual gradient, which is typically calculated from
the entire data set, by an estimate, which is calculated from a randomly selected subset of the data.
In high-dimensional optimization problems this technique reduces the computational complexity and
hence the computation time, resulting in faster iterations. SGD has a single learning rate, denoted α by
convention, for all weight updates during training. The learning rate is considered to fixed through an
entire estimation procedure as well. The two latter features, are sometimes regarded as disadvantage of
the particular estimation technique and may not be suitable in all the contexts.

Once we have briefly presented its original predecessor, we may pass directly to Adam algorithm de-
scription as well as the procedures, which influenced its creation. The chosen method combines the
advantages of two other extensions of SGD, which are:

• Adaptive Gradient Algorithm (AdaGrad), where the per-parameter learning rate is maintained
fixed, which is suitable for sparse data learning problems (Duchi, Hazan, and Singer 2011);

• Root Mean Square Propagation (RMSProp), for which the per-parameter learning rates are
adapted based on the average of recent values of the gradients for the weight. Tthis is an unpub-
lished method supported by the community, more information may be found in Bengio and CA
(2015).

This properties make the algorithm especially well performing on a non-stationary problems, including
noisy data, as well as any other problem types. Instead of adapting the parameter learning rates based
on the mean values (first moments) as in RMSProp, Adam uses of the average of the second moments
of the gradients as well.

The Adam is configured using a following set of hyper-parameters (for more details on numerical im-
plementation and working with Keras see Appendix D.3):

• alpha, which stands for the learning rate or step size, designing the proportion at which the
weights are updated. Traditionally, as it was proposed by authors Kingma and Ba (2014), the
value of α equals to 1e− 8, but in our application we approach it to the values used in the DFGS
algorithm, assuming that α = 1e − 1 = 0.1. Large values results in faster initial learning rate,
before it is updated, while inferior values slow learning significantly and require more runs;

• beta1, describes the exponential decay rate for the first moment estimates. We assume this value
to be fixed to the defaults of Keras, which is β1 = 0.9;

• beta2 is the exponential decay rate for the second moment estimates, which is by default β2 =
0.999;

• ε is the last hyper-parameter, which is a very small number to prevent any division by zero in the
algorithm implementation. In Keras this value is ε = 1e− 8.
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2.2.2 Estimation results presentation

The comparison of the estimates obtained by the different models over different datasets can be done
in two steps. First of all, we are interested in the observed mean effects over the datasets, because the
possibility to correctly identify the means for the coefficients is of utmost importance for the analysis,
regardless of the assumption on the heterogeneity of these effects. Then we are going to explore the ad-
ditional dimension, provided by the MMNL estimates, which comprises the estimates for the variance-
covariance matrix of the correlated random effects. The estimates obtained directly are the entries of
the Choleski decomposition matrix and need to be transformed in order to observe the variances and
covariances.

The results for the means estimates are regrouped in the table 10 on page 57. Now we can pass to
the discussion of the obtained results and demonstrate the differences of the performances observed
for different algorithms. We are going to start with the discussion of the estimates obtained with more
traditional to econometric field MNL and MMNL models. Effectively, the MNL model allows us to
obtain the exact estimates, due to the fast convergence rate and the relative simplicity of the problem.
What is more, and what is of particular interest for us, it is how the MMNL model performs on the
MNL specific dataset with fixed effects. The estimates obtained with the MMNL model for the fixed
effects dataset demonstrate quasi-identical estimates as traditional MNL model, which nearly all the
Choleski decomposition matrix element estimates statistically insignificant to zeros. Observing the
estimates obtained from the two models we may rightfully conclude, that there is no evident danger
in implementing a MMNL model in place of a MNL model on the fixed effects dataset, because the
obtained estimates will point out the absence of the heterogeneous preferences in such case. The only
disadvantage of the models misspecification in this case resides in the significantly increased estimation
time, which requires significantly more iteration in order to estimate correctly the variance-covariance
matrix elements and, consequently, the estimation complexity.

On the contrary, in the case of presence of the correlated random effects in the preferences of the popu-
lation the estimates are significantly biased for the MNL model. Moreover, the estimates obtained with
the MMNLmodel are not identical to the input parameters, which were used during the simulation step.
In this situation the MNLmodel tends to significantly underestimate the effects of all the characteristics
and attributes for the choice situation. This can potentially lead to a notorious bias in case we were
using incorrect model specification during a field experiment data exploration.

The results for the Choleski matrix entries estimates are regrouped into a single table 11 on page 58
Based on these estimates, we can comment as well the potential inefficiency of the implemented algo-
rithm, even if it is one of the best available to us. Even though the estimates of the means obtained
with MMNL in the presence of the random effects are close to the theoretical ones, the estimates of the
variance-covariance matrix elements are rather close, but not perfectly calculated. Which is important,
as we had a rather large dataset compared to the datasets typically collected during field studies: 1000
individuals with 10 replications of 16 choice sets situations for each totalling to 160000 choice situa-
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Table 10: Estimation results: mean effects

Fixed effects Random effects Target

MNL MMNL CNN MNL MMNL CNN

Characteristics
Sex 1.401∗∗∗ 1.400∗∗∗ 1.369 0.712∗∗∗ 1.297∗∗∗ 0.719 1.420

(0.031) (0.031) (0.016) (0.024)
Age 0.009∗∗∗ 0.009∗∗∗ 0.010 0.007∗∗∗ 0.010∗∗∗ 0.005 0.009

(0.001) (0.001) (0.001) (0.001)
Salary 0.048∗∗∗ 0.048∗∗∗ 0.060 0.066∗∗∗ 0.120∗∗∗ 0.062 0.057

(0.010) (0.010) (0.005) (0.008)
Habit 1.070∗∗∗ 1.071∗∗∗ 1.056 0.361∗∗∗ 0.641∗∗∗ 0.343 1.027

(0.030) (0.030) (0.016) (0.024)
Attributes
Price −1.626∗∗∗−1.628∗∗∗−1.618 −0.886∗∗∗−1.586∗∗∗−0.886 −1.631

(0.010) (0.010) (0.006) (0.010)
Buy 2.311∗∗∗ 2.313∗∗∗ 2.228 0.662∗∗∗ 2.180∗∗∗ 0.665 2.285

(0.065) (0.066) (0.036) (0.054)
Label 2.815∗∗∗ 2.817∗∗∗ 2.810 1.279∗∗∗ 1.922∗∗∗ 1.277 2.824

(0.022) (0.022) (0.015) (0.023)
Carbon 6.654∗∗∗ 6.662∗∗∗ 6.634 3.259∗∗∗ 5.430∗∗∗ 3.250 6.665

(0.032) (0.033) (0.016) (0.030)
LC −2.781∗∗∗−2.782∗∗∗−2.765 −1.546∗∗∗−2.663∗∗∗−1.558 −2.785

(0.028) (0.028) (0.019) (0.030)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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tions. While in the original field study 102 individuals with only 2 replications of 6 choice sets were
present, mounting to 1224 observations.

This situation demonstrates the existing trade-off between the need to correctly specify the model from
the start and the potential computation inconveniences in the case of implementation of a more complex
model in case of uncertainty. In other words, the scientists always face the choice either to simply
use more complex model, which requires more data, calculation time and resources, or to perform an
extensive theoretical study beforehand in order to correctly specify and delimit the model from the start.

Table 11: Estimation results: standard deviations and covariances

Fixed effects Random effects Target

MMNL MMNL

Standard deviations
Buy 0.095 2.960∗∗∗ 3.202

(0.061) (0.028)
Label 0.031 2.687∗∗∗ 2.654

(0.077) (0.023)
Carbon 0.164∗ 3.734∗∗∗ 3.535

(0.076) (0.026)
LC 0.145∗ 2.851∗∗∗ 2.711

(0.071) (0.031)
Covariances
Buy:Label −0.948 −0.311∗∗∗−0.54

(5.116) (0.026)
Buy:Carbon −0.886 −0.565∗∗∗−4.39

(1.954) (0.026)
Label:Carbon 0.891 0.959∗∗∗ 8.77

(1.578) (0.003)
Buy:LC 0.669 0.789∗∗∗ 6.17

(0.501) (0.005)
Label:LC −0.576 −0.490∗∗∗−2.33

(4.423) (0.032)
Carbon:LC −0.568 −0.651∗∗∗−4.82

(1.604) (0.030)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Now we can switch to the discussion of the estimates obtained with Adam estimated CNN model,
identical in structure to the MNL model. For reminder, we use convolution layers to calculate the
relative deterministic utilities for the population Vj for three alternatives, which are then converted to
probabilities using a softmax dense layer with predefined unit weights for corresponding neurons.

As for the CNN estimates, the table 10 demonstrates, that the obtained estimates are technically identical
to the means, we could see in the previous part for the MNL model estimates. These results demon-
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strate the flexibility of the NN models and the hypothetical possibility to implement them in place of
traditional econometric models with only inconvenience being the relative complexity to obtain the
variances for the weights estimates, as non known to us method allows this. This only inconvenience
renders impossible to analyse the statistical significance for the obtained weight estimates, which can
be seen only over the marginal effects graphs for particular variable on the probability, but this is other
discussion’s topic. For now, the most important part is that the CNN imitation of the MNL models,
estimated with a high learning rate (α = 1e − 1) Adam algorithm, allows to obtain correct estimates
for the means of the theoretical utility function, assuming the variables were chosen correctly.

Because of the nature of the constructed CNN model latter performs similarly to the traditional MNL
model. This situation implies that the proposed CNN algorithm is, identically to MNLmodel, unable to
identify correct parameters and consequently derive the true means for the underlying coefficients of the
relative utility function in the presence of heterogeneous preferences among individuals. Nevertheless,
given the flexibility of the NN it is theoretically possible to device an algorithm imitating the MMNL
model’s behaviour or even propose some alternative modelling techniques which will be able to supply,
not directly through estimated weights but rather after a supplementary study, the correct estimates for
marginal effects of the attributes on the choice probabilities.

To summarise this section, we can underline the successful implementation of the chosen mathematical
models over the artificially created datasets simulating different choice situations. The effects identified
by all of the models are close to the target values, although there exists clear evidence that the MMNL
models perform significantly better in mean effects identification in all the contexts. At the same time
theMNLmodel and its synthetically recreated NN counterpart underestimate the coefficient of the given
relative utility functions in presence of the correlated random parameters in the individual utilities.

2.3 Performance evaluation and comparison

This section comprises the results we managed to achieve in the exploration of different performance
metrics and provides insights on the functioning of the discussed mathematical models in a given con-
text. As we have seen in the previous part, where the effects’ estimates were provided, all of the mod-
els are able to provide some estimates for the retaliate utility function parameters in different discrete
choice set-ups. The most simple models performed well on the dataset defined by the homogeneous
preferences in the population for environmental attributes, underestimating the effects in the presence
of preference heterogeneity. In the same time the more complex MMNL model performed sufficiently
well in both behavioural set-ups, although it demonstrated some potential problems with the algorithmic
implementation.
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2.3.1 Overall precision

First of all we focus our attention on the general performance metrics, describing howwell the estimated
models fit the predicted outcomes over an original dataset. As we have discussed earlier we use only
some of the available measures in an attempt not to make this work too cumbersome. The retained
performance metrics are: accuracy, describing the overall goodness of fit over observed choices of the
subjects; and more complex KDL measure, which compares the distributions instead of more simple
metrics, which use only the information available in the confusion matrix.

We can observe the values of these general performance measures, describing overall performance of
a given classifier in the table 12. The table regroups the metrics’ values for all the estimated models.

Table 12: General performance measures

Fixed effects Random effects
MNL MMNL CNN MNL MMNL CNN

Overall measures
Accuracy 0.863 0.863 0.723 0.725 0.863 0.721

Probabilistic measures
KLD 0.623 0.623 0.328 0.349 0.625 0.317

As we have underlined earlier we observe quite natural situation when the best model in terms of overall
performance is the model, which was used in the data generation step. This situation perfectly demon-
strates the potential bias, which is explained by our choice of the artificial data-generation algorithm.
Nevertheless, it should be noted, that the MNL and MMNL models perform equally well on the fixed
effects dataset, where the preferences for the environmental attributes are homogeneous. This fact sup-
ports our initial hypothesis that an implementation of a more complex model is preferred when the real
effects are unknown to the researcher.

Focusing our attention on the CNN model observe that the Adam algorithm did not outperform the
BFGS procedure. This observation may be explained by the data-generation set-up, where the gener-
ative algorithm favoured the MNL model, rather than Adam. The latter not supporting the fine tuning
over the error distribution.

We can observe the results for the resources efficiency we managed to obtain, which are regrouped in
the table 13. Even though we present all the time values, we are mostly interested with the “user” and
“system” time values. The first one indicates the CPU time charged for the execution of user instructions
of the calling process, while the second one stand for the CPU time spent for execution by the system
on behalf of the calling process.

The more advanced Adam algorithm easily bypasses the algorithms available in the mlogit package,
although this boost in efficiency goes at the cost of lower overall performance and goodness of fit. At
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Table 13: Ressources efficiency

Fixed effects Random effects
MNL MMNL CNN MNL MMNL CNN

User 20.910 452.414 17.433 18.722 2066.934 16.806
System 0.153 1.712 0.714 0.004 16.112 0.415
Total 21.068 454.192 8.412 18.726 2083.221 7.604

the same time, the MMNL implementation is far less efficient and takes 128 times more time, than CNN
model. This situation clearly illustrates us how the precision and flexibility come at higher costs.

2.3.2 Alternative specific metrics

We proceed with a look at some more specific measures. The table 14 regroups response specific
metrics, that describe the precision of model in predicting only one target class of the dataset. These
metrics are mostly used when we are interested in some in-depth insight into the model performance and
allow to identify the models which perform the best over a single class of interest. Given the context of
Michaud, Llerena, and Joly (2012) study we are interested in identifying the algorithm which predicts
the best “buy” (A and B alternatives) against “not buy” (C) alternative, providing at the same time some
information about the alternative chosen. In order to evaluate the performance at this dimension we use
Geometric mean and the F-measure performance estimators.

Table 14: Variable specific performance measures, fixed effects data

Fixed effects Random effects
C A B C A B

Geometric mean  
MNL 0.454 0.848 0.868 0.432 0.696 0.693
MMNL 0.454 0.849 0.867 0.452 0.848 0.867
CNN 0.443 0.697 0.698 0.447 0.697 0.700

F-measure
MNL 0.318 0.834 0.873 0.282 0.666 0.704
MMNL 0.318 0.834 0.873 0.316 0.833 0.873
CNN 0.291 0.665 0.706 0.294 0.665 0.707

In the table 14 we are interested with the entries in the columns corresponding to the “No buy” alterna-
tive (C). For the dataset with fixed effects across the population, the MNL and MMNL models perform
identically according to both of the selected measures. The CNN model falls behind the econometrics
models on the fixed effects dataset, although situation changes in the presence of heterogeneous effects.
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In the more complex case scenario, when the individuals have varying across population preferences
towards one or another attribute, the CNN model outperforms the simple MNL model in detecting “No
buy” decisions for given choice sets, which is rather interesting, because the overall model’s perfor-
mance is still inferior to the MNL, as it was shown in table 14.

2.3.3 Willingness to pay and premiums

Here we should present the most important results comparing the estimates for the WTP, as well as
the premiums for particular attributes derived for different models. The Premium to pay for a rose’s
particular attribute as it was described previously can be represented as:

Premium =
δV

δXk

δV
δP rice

(70)

At the same time, the WTP for a rose may be seen as the ratio of two corresponding coefficients of
dummy variable and price. The table 15 presents the estimated WTP and premiums for the models,
which output fixed coefficient estimates, without taking into account the randomness of the individual
effects. In other words, this table regroups the results, which do not require bootstrapping for confidence
interval estimation.

Table 15: WTP and Premiums obtained with MNL and CNN

Fixed effects Random effects Target
MNL CNN MNL CNN

WTP 1.421 1.377 0.747 0.751 1.401
Label 1.731 1.737 1.445 1.442 1.731
Carbon 4.091 4.101 3.679 3.669 4.086
LC 4.112 4.129 3.378 3.352 4.110

For the estimation of the WTP and the premiums for more complex models (the MMNL in our case) we
use the same procedure, as was implemented byMichaud, Llerena, and Joly (2012). Because the random
parameters are assumed to be correlated in the MMNL model’s specification, the estimated standard
deviations and confidence intervals are obtained using the Krinsky and Robb parametric bootstrapping
method (Krinsky and Robb 1986). This procedure consists of generating of multiple random draws
from a multivariate normal distribution and using the obtained results to obtain the confidence interval
estimates. Exactly as in the original study we generate 1000 draws from a multivariate normal distribu-
tion (MNV (µ,Σ)), with the coefficient estimates as means µ and the estimated variance-covariance
matrix of the random parameters as Σ.

The obtained results are then summarised as follows in the table 16
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Table 16: WTP and Premiums obtained with MMNL

Statistics
Mean St. Dev. Min Pctl(25) Pctl(75) Max

Fixed effects
WTP 1.416 0.058 1.233 1.377 1.455 1.613
Label 1.732 0.019 1.672 1.720 1.745 1.791
Carbon 4.097 0.103 3.730 4.026 4.166 4.434
LC 4.116 0.098 3.741 4.051 4.182 4.421

Random effects
WTP 1.360 1.887 −4.239 0.073 2.662 7.893
Label 1.243 1.667 −3.867 0.104 2.330 6.638
Carbon 3.467 2.323 −4.026 1.880 5.043 11.671
LC 3.036 3.240 −7.430 0.908 5.160 14.259

Target
WTP 1.418 1.973 −4.474 0.058 2.798 6.706
Label 1.735 1.611 −2.652 0.653 2.849 6.709
Carbon 4.076 2.134 −1.774 2.608 5.543 11.217
LC 4.106 3.379 −6.304 1.913 6.439 14.612

Note: The estimates are obtained with 1000 draws from MNV distribution

Comparing the estimates to the input values we observe that the variance of the WTP and Premiums
estimates, estimated over a fixed effects dataset, do not potentially affect the conclusion one can derive
from the results. The values stay positive with the 75% interval within 0.2€ of the mean estimate.
Assuming the model is not re-estimated and adjusted after the insignificant estimators are obtained for
Choleski matrix elements, the results remain valid.

We may conclude, that given sufficiently large dataset the implementation of more complex model is
preferable, because it will allow to control for unknown parameters without adding a risk of obtaining
biased results. The more simple models, should be preferred in a more restricted context. They allow
to obtain the valid results only in the case of correct theoretical assumptions, biasing the estimates in
other conditions. Consequently, in the presence of uncertainty about the presence of heterogeneity in
the customer choice modelling questions there is a strong interest to implement a more complex model,
readjusting it afterwards if needed.

63



Conclusion

In this work we have introduced the reader to the problematic of the different modelling paradigms
in application to the consumer choice studies. By means of an experimental theory-testing framework
we demonstrate the complexity of the model performance evaluation problematic, showing the eventual
bottlenecks and the questions to be answered on all the levels of data exploration procedure. The correct
specification of the theoretical assumptions, the dataset generation, the model choice as well as the per-
formance measure choice were studied. The main objective to propose a comprehensive methodology
for theory-testing framework creation was accomplished, illustrating the devised frameworks’ potential
over an economic question issued from real world.

Two different consumer choice situation were explored, issued from the setting delimited by Michaud,
Llerena, and Joly (2012). The discrete choice context allowed us to compare how the presence of het-
erogeneous preferences for environmental attributes affected the possibility to identify correctly the
underlying utility functions, as well as to derive the WTP and premiums for the attributes. The imple-
mentation of artificial dataset simulation techniques proved its potential in creation of fully controlled
data samples, providing two consistent datasets constructed under RUM assumptions. Given the data,
we could observe, how taste heterogeneity affected the population’s choice distribution and the resulting
datasets, as well as their impact on models’ performances.

A total of three models, issued from alien disciplines such as econometrics (MNL andMMNL) and ML
(CNN-MNL), were implemented over the generated artificial datasets. We could demonstrate the dif-
ferences and similarities between the traditional econometrics models and such ML techniques as NN.
The econometric models allowed us to observe the potential biases that researchers risk to induce using
the simplest models in unjustified context. The ML model made it possible to demonstrate, how differ-
ent approaches to optimisation and algorithmic solutions influence the obtained results. Moreover, the
framework demonstrated, that ML models could be used instead of the traditional econometrics tech-
niques under correct specification, as technically NN are able to approximate any other more simple
linear or non-linear model. All of the models demonstrated good overall performance given the homo-
geneous individual preferences setting, while only the most complex MMNL model achieved sufficient
results in presence of taste heterogeneity.

The multidimensionality of the explored situation allows us to tear several solutions from this work in
terms of model performances in presence of heterogeneous preferences. The MMNL models demon-
strated a better adaptivity for the different datasets and consequently a better adaptiveness in all the
cases. This family of models showed a great tolerance for the eventual misspecification in the assump-
tions of the presence of random effects. On the contrary, the MNL models produced biased estimates
in the presence of the random effects in population, which indicates a great danger and signal the im-
portance of the correct specifications a preliminary data studies to be performed before the models
estimation. The only observed difference was in the way the resulting approximation was unable to
directly estimate the variance for the linear part coefficients, which is not initially the main focus of the
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NN models. However, the marginal effects could still be derived for the individual characteristics or
the alternative specific attributes, assuming a correct approximation was used, which does not inflate
the overall variance for the marginal effects.

Nevertheless, there exist potential biases that require particular attention and caution in future research.
The implemented data-generation procedure risks to bias the results in favour of the econometrics mod-
els, which were used to simulate the data. Speaking about the models, we have observed that the adap-
tiveness and flexibility of the MMNL model comets at some costs in resources efficiency. The time,
computation power and the data amount needed to achieve satisfying results are significantly higher
than for the other models.

This work demonstrates only a fraction of the full potential of the theory-testing framework. Many
extensions and generalisations should be performed before it could be used at scale. For example, it
is particularly interesting to introduce an extension which will provide the possibility to explore and
compare how different behavioural theories (RUM, RRM, QDM) affects the estimation results. Even
more, with this methodology it becomes possible to explore the effects of non-additive utility presence
or the behaviour of populations with mixed behaviours presence. Another extension concerns the im-
plemented mathematical models and consists in incorporating the most recent developments in the ML
field into the framework, enabling users to implement such models as decision trees or more advanced
NN. Last, but not the least, the framework could be complemented with a methodological tool-set for
hypothesis testing using the advantages of a controlled experiment data collection.

To summarise, we conclude that the experimental framework has proven its importance for the empir-
ical and theoretical studies and has demonstrated its potential. There clearly exist a strong need for a
more extensive study and development of this framework to provide the research community with a
hypothesis testing tool-set, which could be used in the context of the consumer choice modelling. The
exploration of potential biases and theory-testing will allow us to establish a comprehensive and consis-
tent methodology to be implemented latter in empirical work and controlled experiments in particular.
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Appendices

A Taxonomies of statistical models

Figure 7: Taxonomy as proposed by Hastie and Tibshirani (2009), reduced form
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Figure 8: Taxonomy as proposed by Ayodele (2010)
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Figure 9: Taxonomy as proposed by Agresti (2013), based on data types

Machine Learning

GLM

Multinomial
responses

Ordinal
responses

Cumulative
logit

Nominal
responses

Baseline-
Category

logit

Binary
responses

Conditional
logit

Probit Logit Complementary
Log-log
models

78



B Performance measures positioning

Figure 10: Performance measures as described by Japkowicz (2011)
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C Descriptive statistics

C.1 Comparing datasets over A alternative

Table 17: Alternatives’ descriptive statistics by dataset, stratified by alternative

Alternative Fixed Effects Random Effects Target p value
(N=320000) (N=320000) (N=2372)

A Alternative
A 160000 (100.0%) 160000 (100.0%) 1186 (100.0%)
B 0 (0.0%) 0 (0.0%) 0 (0.0%)

Choice < 0.001
Mean (SD) 0.427 (0.495) 0.382 (0.486) 0.517 (0.500)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Price 0.022
Mean (SD) 3.069 (0.979) 3.069 (0.979) 2.990 (0.881)
Range 1.500 - 4.500 1.500 - 4.500 1.500 - 4.500

Carbon < 0.001
Mean (SD) 0.500 (0.500) 0.500 (0.500) 0.167 (0.373)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Label 0.993
Mean (SD) 0.500 (0.500) 0.500 (0.500) 0.502 (0.500)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Price by group < 0.001
1.5 16000 (10.0%) 16000 (10.0%) 82 (6.9%)
2 24000 (15.0%) 24000 (15.0%) 223 (18.8%)
2.5 27000 (16.9%) 27000 (16.9%) 214 (18.0%)
3 23000 (14.4%) 23000 (14.4%) 175 (14.8%)
3.5 22000 (13.8%) 22000 (13.8%) 187 (15.8%)
4 21000 (13.1%) 21000 (13.1%) 219 (18.5%)
4.5 27000 (16.9%) 27000 (16.9%) 86 (7.3%)
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C.2 Comparing datasets over B alternative

Table 18: Alternatives’ descriptive statistics by dataset, stratified by alternative

Alternative Fixed Effects Random Effects Target p value
(N=320000) (N=320000) (N=2372)

B Alternative
A 0 (0.0%) 0 (0.0%) 0 (0.0%)
B 160000 (100.0%) 160000 (100.0%) 1186 (100.0%)

Choice < 0.001
Mean (SD) 0.518 (0.500) 0.462 (0.499) 0.159 (0.366)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Price < 0.001
Mean (SD) 2.803 (0.917) 2.803 (0.917) 3.020 (0.893)
Range 1.500 - 4.500 1.500 - 4.500 1.500 - 4.500

Carbon < 0.001
Mean (SD) 0.500 (0.500) 0.500 (0.500) 0.832 (0.374)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Label 0.985
Mean (SD) 0.500 (0.500) 0.500 (0.500) 0.497 (0.500)
Range 0.000 - 1.000 0.000 - 1.000 0.000 - 1.000

Price by group < 0.001
1.5 25000 (15.6%) 25000 (15.6%) 108 (9.1%)
2 28000 (17.5%) 28000 (17.5%) 192 (16.2%)
2.5 26000 (16.2%) 26000 (16.2%) 158 (13.3%)
3 30000 (18.8%) 30000 (18.8%) 204 (17.2%)
3.5 18000 (11.2%) 18000 (11.2%) 232 (19.6%)
4 23000 (14.4%) 23000 (14.4%) 195 (16.4%)
4.5 10000 (6.2%) 10000 (6.2%) 97 (8.2%)
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D R code for implemented models

D.1 MNL model

# Transform dataset to mlogit format
mnl_data = data %>%

mlogit.data(
choice = "Choice",
alt.var = "Alternative",
shape = "long", # Long format
alt.levels = c("C", "A", "B") # Define order of alternatives

)

# Function
utility = Choice ~ Sex + Age + Salary + Habit + # Individual characteristics

Price + Buy + Label + Carbon + LC + 0 | 0 # Alternatives attributes

# Estimate MNL model
mnl_novar = mlogit(

utility,
data = mnl_data,
reflevel = "C", # The No-buy option is the baseline
print.level = 3, # Print estimation details
iterlim = 1000

)

D.2 MMNL model

# Transform dataset to mlogit format
mmnl_data = data %>%

mlogit.data(
choice = "Choice",
alt.var = "Alternative",
id = "ID", # Set individuals' index
chid = "CHID", # Set choice sets index
shape = "long",
alt.levels = c("C", "A", "B")
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)

# Function
utility = Choice ~ Sex + Age + Salary + Habit + # Individual characteristics

Price + Buy + Label + Carbon + LC + 0 | 0 # Alternatives attributes

# Estimate MMNL model
mmnl = mlogit(

utility,
data = mmnl_data,
reflevel = "C", # The No-buy option is the baseline
correlation = TRUE, # Include covariance (and not variance only)
rpar = c( # Normality assumption and four parameters

"Buy" = "n",
"Label" = "n",
"Carbon" = "n",
"LC" = "n"

),
panel = TRUE, # Estimate dataset as panel
print.level = 3, # Print estimation details
iterlim = 1000

)

D.3 CNN model with Adam algorithm

# Used libraries
library(tidyverse)
library(tensorflow)
library(keras)

# Define optimization algorithm to be used
adam_own = optimizer_adam(

lr = 1e-1, # We adjust the learning rate, keeping the rest as defaults
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = NULL,
decay = 0,
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amsgrad = FALSE,
clipnorm = 6, # We limit as well the max value for weights
clipvalue = NULL

)

# Set hyperparameters
## The number of epochs is a hyperparameter that defines the number times
## that the learning algorithm will work through the entire training
## dataset.
epoch = 50
## The batch size is a hyperparameter that defines the number of samples
## to work through before updating the internal model parameters.
batch = 16000

# Limit softmax weights
## (keras uses dense layer transformation inside softmax layer by default)
softmax_weights = list(

matrix(
c( 1, 0, 0,

0, 1, 0,
0, 0, 1),

nrow = 3
)

)

# Setup CNN model
model_cnn = keras_model_sequential() %>%

# We reshape the dataset, as 1D convolution requires 3D tensor as input
layer_reshape(

target_shape = c(27, 1),
input_shape = 27,
trainable = FALSE

) %>%
# 1D convolution layer
layer_conv_1d(

filters = 1L, # Dimentions of the output space
kernel_size = 9L, # Number of parameters
strides = 9L, # Strides of convolution equal to parameters side
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# The starting value is 0 to ensure reproducibility
kernel_initializer = "zeros",
# The constant is not added, because we already have "Buy" dummy
use_bias = FALSE,
# We want a linear activation function
activation = "linear",
input_shape = c(27, 1)

) %>%
# An inverse transformation into a 2D tensor for softmax implementation
layer_flatten(

data_format = "channels_first"
) %>%
# Softmax layer
layer_dense(

units = 3, # Number of units equal to categories (3 utilities)
use_bias = FALSE, # The bias constant is not estimated
weights = softmax_weights,
trainable = FALSE, # This layer is fixed
activation = "softmax" # Softmax layer (to obtain probabilities)

) %>%
# Learning algorith definition
compile(

loss = "categorical_crossentropy", # Choice of loss function
optimizer = adam_own, # Parametrised Adam
metrics = c("accuracy") # Target metrics

) %>%
# Training the model
fit(

X_train, Y_train, # To train the model we use 80% of our dataset
epochs = epoch,
batch_size = batch,
validation_data = list(X_test, Y_test) # 20% for validation

)
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Annexes

I Simulation tool for performance comparison of discrete choice models

Author: Amirreza Talebijamalabad, M1 SIE (Grenoble INP)

Under supervision of: Iragaël Joly, HDR (GAEL, UGA, Grenoble INP)

Available at: https://github.com/Amirreza-96/sdcm

An experimental design is a plan which identifies the independent, dependent, and nuisance variables
and indicates the way in which the randomization and statistical aspects of an experiment are to be
carried out. Speaking of experimental design, we need to bear randomization, replication and blocking
in our minds as three key elements of the experimental design (Kirk 2012). Randomization as a rather
new concept in design of experiments, plays a pivotal role in distribution of idiosyncratic characteristics
and variables’ levels so that they do not selectively bias the outcome of the experiment. For example, in
our designs, we applied randomization to avoid dominant alternatives as much as we can. Replication
is the observation of two or more experimental units under the same conditions. Replication enables
us to validate the proposed model and ensures the precise effects. Usually, in simulation, we run a very
long replication or we make relatively many replications but small in dimensions, which we choose to
replicate once but large enough. Blocking, on the other hand, is an experimental procedure for isolating
variation attributable to a nuisance variable. Also, making blocks, we can randomly assign respondents
to the choice sets or control the number of respondents in order to intimate the real scenarios; However,
blocking is not of great importance when we are talking in the realm of simulation since we can control
variations and variables.

Stated choice experiments present sampled respondents with a number of different choice situations,
each consisting of a universal but finite set of alternatives defined on a number of attribute dimensions.
Respondents are then asked to specify their preferred alternatives given a specific hypothetical choice
context. In simulation, since the respondents are artificial, it will not bewiseful to sample the population,
instead, replicationg the processes would be fruitful as the populationwill be generated repeatedlywhich
is more close to reality. Moreover, to simulate the choice making process, based on decision rules such
as utility maximization, utilities are calculated to reveal the choices of the individuals. SC data requires
that the analyst designs the experiment in advance by assigning attribute levels to the attributes that
define each of the alternatives which respondents are asked to consider(Rose et al. 2008).

To generate experimental designs for SC studies we need to find out how to allocate the attribute levels
to the design matrix. Traditionally, researchers have relied on the principle of orthogonality to populate
the choice situations shown to respondents. The orthogonality of an experimental design relates to the
correlation structure between the attributes of the design. however, this class of designs may not be
statistically efficient, as they do not take the SC model specification into account. These models are
optimal for the linear models and assure the researcher that multicollinearity does not exist in design.
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Considering this, it is assumed that such designs can be used for the non-linear models by linear ar-
rangements(Kuhfeld 2003). It is important to note however, that the orthogonality of a design suggests
nothing about whether two or more attributes are cognitively correlated in the minds of the respondents
(e.g. price and quality attributes). As such, orthogonality is purely a statistical property of the design and
not a behavioural property imposed upon the experiment(Rose and Bliemer 2006). Moreover, by en-
treing non-design attributes such as socio-demographic variables, any covariate within the dataset will
unlikely be orthogonal, not only amongst themselves, but also with the design attributes. For example,
if age, gender and income are added as variables in an analysis, correlations are not only likely to exist
for these variables, but given that the variables described are constant over all choice situations within
individual respondents, correlations between these variables and other attributes of the design are also
likely to exist. Simulation tool should allow us to enter or not such soci-demographic variables to the
simulation process so that at least we have some control on correlations. Furthermore, more advanced
data generation methods should be applied to generate correlated data with specific precision. In this
research, we have made a very conventional and widespread design so called full factorial design. It
contains all of the possible levels of factors, and allows us to estimate all of the main effects and two-way
interactions. Main effects are independent of the levels of other attributes, however; interactions involve
two or more factors in which, effect of one factor depends on the level of another(Kuhfeld 2003). Fur-
thermore, there are fractional orthogonal designs known as efficient designs providing ratherly small
but efficient designs, also, there are algorithms to determine the correlations between columns as or-
thogonality is violated in these designs. It would be excellent if various kinds of designs were available
in simulator.

Michaud, Llerena, and Joly (2013) conducted an empirical work to figure out consumers’ willingness
to pay, and a price premium for two environmental attributes of a non-food agricultural product(Roses).
In this research there are two unlabelled alternatives Rose A and B and one no choice alternative. The
two attributes, Label and Carbon, have two levels which make four combinations, hence six pairs of
alternatives can be drawn from these combinations. Price ranges from 1.5 to 4.5 and is randomly as-
signed to the combinations of two other attributes. Finally, each respondent is faced with twelve choice
sets(24 combinations of all attributes or 12 questions), hence, considerring no choice mode, there are
three alternatives in each question. Trying to simulate the paper’s results, we made a design with the
same attributes and attribute levels. We sample put alternatives two by two in choice sets (16 choice
sittuation), hence, respondents are faced twice with six pairs of alternatives, but the price is randomly
assigned to each of the choice sets. Moreover, as no-choice mode does not effect the design, we do not
add this mode to the design but finally, when it comes to utility comparison and decision process, this
alternative is taken into account. Furthermore, we have not put interaction variable in the design since
as no-choice mode, it does not affect the combinations of the design. To add, it makes the tool more
flexible if we allow the user to decide about these two options.

Michaud, Llerena, and Joly (2013) considered four socioeconomic characteristics as well as sex, age,
income and organic purchase habit. Since no information were available in regard to these features’
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correlation, we assumed that they are uncorrelated, and made each feature independently. This is a lim-
itation for data generation process. Simulator must enable the user to specify whether data is correlated
or not. Moreover, it should allow the user to enter the inputs and specifications as well as distributions
and their parameters. In order to generate sex data, we draw samples out of a uniform distribution with
parameters a = 0, b = 1, then we assume that there is a 0.49 chance that a respondent is female. Hence,
if the random number is in range (0, 0.49), hypothetical individual is female, otherwise, is male. The
same procedure applies to the habit feautre. If the random number is among (0, 0.35), organic habit
is assumed to be zero. In order to generate age feature, the best distribution that we can draw samples
which exactly could resemble the real data is truncated normal distribution. However, we just have
the tnormal distribution’s parameters and we need to have the underlying normal distribution’s parame-
ters(mean, and std.) to be able to draw samples. To tackle this, we solve a system of non-linear equations
utilising numerical methods(Newton Raphson method) to find the underlying normal dist. parameters.
Another way to generate such data is to draw samples from a log normal distribution. We still have a
problem with this way since we need to have data ranging from 18 to 85, nevertheless positive values
are generated. And finally, we simply take draws from normal distribution with the same parameters.
As future improvements, simulation tool should be able to generate data based on theoretical distribu-
tions or empirical ones. Hence, some curve fitting procedures to find the distribution best fitting the
real datashould be installed in the tool.

So far, we have made the design and socioeconomic features for artificial individuals. Now, we need
to specify utilities per each individual, and finally, due to the RUM model, we select the alternative
with highest utility per each individual per each choice set. As a future improvement, we suggust
that simulation tool should be able to simulate decision making process based on different approaches
for example, regret minimization. In order to calculate utilities, we took parameters from the paper
(a priori). All of the terms mentioned in the paper including ASC are used. We take no-choice as
reference alternative. Firstly, a matrix of 4 × 1000 is constructed for socioeconomic characteristics
parameters. Each column indicates a person , and all of the columns are similar since the parameters are
constant for all of the people. Then, this matrix is pointly multiplied with the matrix of socioeconomic
charachteristics matrix, and finally the sum of each column is the socioeconomic utility of each person
and a vector of utility is achieved. Secondly, a matrix of 1000 × 5 is made to contain the parameters
corresponding to the alternatives(price, label, carbon, label-carbon, constant). each row of this matrix
is drawn from multivariate normal distribution, µ+L×R where µ is a vector of means of parameters,
L is derived from Cholesky decomposition(L×L′ = σ2) andR is a vector ofK draws from aN (0, 1).
Finally, this matrix is multiplied by the inverse of design matrix which results in a matrix of 1000 × 36
in which each element shows the utility of an alternative for an individual. Consequently, we add up
socioeconomic utility to each of the columns of this matrix. This makes the observed utility. In regard
to unobserved utility, a matrix of 1000 × 36 is containing the draws ofGumbel(0, 1), then we add this
matrix to the previous one and this brings about the utility matrix. For the choice selection process,
columns of utility matrix are compared pair by pair and also the max of these each of these paires is
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compared with an element of Gumbel(0, 1) to specify whether the individual buys or not. Finally, we
suggust that tool decode and clean the data. One important issue is the difference between real data and
simulated data which arises from ommited variables. For example, when it comes to reality, time is a
very important factor affecting the choices made by respondents, but when it comes to simulation, time
is meaningless for artificial individuals. These issues also need to be taken into account specially when
we are comparing estimation results of these two types of data.
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II Reproducible research

This work was accomplished with implementation of the most advanced reproducible research tech-
niques. First of all, a version control system (git) was used to track the changes and modification in the
working tree from the start of the internship. The collaboration with other participants was organised
through GitHub, where a common repository was maintained to store the data and document, as well
as to keep every element of the code or text available to everyone. The report generation was automated
with the use of a simplified markup language with embedded executable R code. For heavy tasks, such
as data generation, model estimation or big data exploration separate source code files were used.

This short documents aims to introduce the reader to used research methodology, that was used in this
work and during the internship. The used tool-set will be introduced.

Git is one of the version control tools alongside SVN and Mercurial-SCM, which allows to easily
control changes and modifications within text documents. Unfortunately the proposed functionality
does not function with more complex proprietary formats such as Word or image based documents,
such as PDF. Consequently, this tool is not practical only for working with simple text documents: it
remains absolutely impractical for working with typical office tasks. Several text editors for developers
amongwhich RStudio, VSCode, Atom andmany other provide possibilities to integrate git functionality
directly into the editor and drastically optimise theworkflow. Thismakes interactingwith gitmuchmore
comfortable than through the command line or a standalone git client.

GitHub is an open source cooperative platform for developers offered by Microsoft making it easier to
workwith the git version control service. The platform has an entire ecosystem of extensions, expanding
git functionality, as well as a set of project management and communication tools. In total this platform
offers:

• A cloud space to host the working files and publish the results;
• A web interface to interact with git from browser or through a standalone app;
• A platform facilitating collaboration with other users, which gradually approaches in the func-

tionality to a social network;
• An integrated project management system.

To write the scientific report it was decided to use the LaTeX complete markup language. There are sev-
eral distributions of LaTeX, one of the verified versions to integrate well with R being tinytex (which is
available as tinytex package in CRAN repositories). However, even if LaTeX produces well structured
documents that are easy to manage, there exists the problem of its complexity in extending its function-
alities. Consequently, it was decided to use an intermediary simplified markup language, which is easy
to use and does not require advanced knowledge of LaTeX: Markdown. It allows to write documents
with simple syntax, which could be later transformed into PDF, HTML and Word documents using the
pandoc converter.
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Finally, to embed the R code inside the document to automatically generate the figures and tables, we
used RMarkdown, which is an extension for Markdown integrating R language inside. Such set-up
ensured, that the documents will be easy to share and modify, preserving at the same time all their
functionality. This work offers all the necessary elements to be fully reproducible.

The resulting compedium is available at: https://github.com/nikitagusarov/performance_exploration
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